针对带有外生变量的自回归移动平均模型(Autoregressive moving average with exogenous variable,ARMAX)的参数辨识问题提出一种两阶段辨识方法.首先通过偏差消除最小二乘方法辨识带有外生变量的自回归部分(Autoregressive part with e...针对带有外生变量的自回归移动平均模型(Autoregressive moving average with exogenous variable,ARMAX)的参数辨识问题提出一种两阶段辨识方法.首先通过偏差消除最小二乘方法辨识带有外生变量的自回归部分(Autoregressive part with exogenous variable,ARX),然后采用Durbin方法将移动平均部分(Moving average,MA)的参数辨识问题转换成一个长自回归模型(Long autoregressive,LAR)的参数辨识问题,并利用MA与等价LAR的参数对应关系直接得到MA参数,最后利用辨识出的MA参数计算出噪声方差.与扩展最小二乘法的数值仿真比较验证了这种两阶段辨识方法的有效性.展开更多
利用TIGGE(THORPEX Interactive Grand Global Ensemble)资料中的CMC、ECMWF、NCEP和UKMO 4个中心全球集合预报模式对2007年10月3日—2008年2月29日逐日累积降水进行多模式集成预报试验。通过集合平均、多模式消除偏差集合平均、加权...利用TIGGE(THORPEX Interactive Grand Global Ensemble)资料中的CMC、ECMWF、NCEP和UKMO 4个中心全球集合预报模式对2007年10月3日—2008年2月29日逐日累积降水进行多模式集成预报试验。通过集合平均、多模式消除偏差集合平均、加权消除偏差集成3种方法进行试验对比,重点分析各中心模式及多模式集成的240~360h(10~15d)延伸期预报的检验效果。结果表明,多模式集成对逐日累积降水240~360h延伸期预报优于单个中心模式,将逐日降水的预报时效提高了72~168h。3种集成方法对比发现,多模式消除偏差集合平均方法预报效果最好,该方法将晴雨量级的降水预报时效在中短期和延伸期至少提高了1d和5d。展开更多
利用德国气象局(German Bureau of Meteorology,GBM)全球中期数值天气预报产品、日本气象厅(Japan Meteorological Agency,JMA)全球中期数值天气预报产品和中国国家气象中心T639数值预报产品3个子模式,采用偏最小二乘回归(partiaI least...利用德国气象局(German Bureau of Meteorology,GBM)全球中期数值天气预报产品、日本气象厅(Japan Meteorological Agency,JMA)全球中期数值天气预报产品和中国国家气象中心T639数值预报产品3个子模式,采用偏最小二乘回归(partiaI least square regression,PLS)方法、超级集成(multi-model superensemble,SUP)方法和消除偏差集成平均(bias-removed ensemble mean,BREM)方法对比试验,建立2012—2013年冬季东亚区域(15°~70°N、90°~145°E)的地面气温多模式集成预报模型,并进行2014年冬季24~72 h预报时效的地面温度的多模式集成预报研究。为进一步验证集成方法的性能是否具备稳定性,以2014年2月1—9日发生的寒潮天气过程为个例进行检验分析。结果表明,多模式集成预报模型能够综合子模式优点,预报效果明显好于3个子模式,且PLS方法优于SUP、BREM集成方法。展开更多
文摘针对带有外生变量的自回归移动平均模型(Autoregressive moving average with exogenous variable,ARMAX)的参数辨识问题提出一种两阶段辨识方法.首先通过偏差消除最小二乘方法辨识带有外生变量的自回归部分(Autoregressive part with exogenous variable,ARX),然后采用Durbin方法将移动平均部分(Moving average,MA)的参数辨识问题转换成一个长自回归模型(Long autoregressive,LAR)的参数辨识问题,并利用MA与等价LAR的参数对应关系直接得到MA参数,最后利用辨识出的MA参数计算出噪声方差.与扩展最小二乘法的数值仿真比较验证了这种两阶段辨识方法的有效性.
文摘利用TIGGE(THORPEX Interactive Grand Global Ensemble)资料中的CMC、ECMWF、NCEP和UKMO 4个中心全球集合预报模式对2007年10月3日—2008年2月29日逐日累积降水进行多模式集成预报试验。通过集合平均、多模式消除偏差集合平均、加权消除偏差集成3种方法进行试验对比,重点分析各中心模式及多模式集成的240~360h(10~15d)延伸期预报的检验效果。结果表明,多模式集成对逐日累积降水240~360h延伸期预报优于单个中心模式,将逐日降水的预报时效提高了72~168h。3种集成方法对比发现,多模式消除偏差集合平均方法预报效果最好,该方法将晴雨量级的降水预报时效在中短期和延伸期至少提高了1d和5d。
文摘利用德国气象局(German Bureau of Meteorology,GBM)全球中期数值天气预报产品、日本气象厅(Japan Meteorological Agency,JMA)全球中期数值天气预报产品和中国国家气象中心T639数值预报产品3个子模式,采用偏最小二乘回归(partiaI least square regression,PLS)方法、超级集成(multi-model superensemble,SUP)方法和消除偏差集成平均(bias-removed ensemble mean,BREM)方法对比试验,建立2012—2013年冬季东亚区域(15°~70°N、90°~145°E)的地面气温多模式集成预报模型,并进行2014年冬季24~72 h预报时效的地面温度的多模式集成预报研究。为进一步验证集成方法的性能是否具备稳定性,以2014年2月1—9日发生的寒潮天气过程为个例进行检验分析。结果表明,多模式集成预报模型能够综合子模式优点,预报效果明显好于3个子模式,且PLS方法优于SUP、BREM集成方法。