An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalan...An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalance, a simulation test stand with a sudden unbalance generation device was set up. Then, the balancing planes were optimized by using the finite element method (FEM) to determine the position for balancing device installation. Finally, the active balancing experiments were carried out on the test stand. The experimental results indicate that the vibration response caused by sudden unbalance can be decreased from 77μm to 8μm by using the active balancing device, and the vibration amplitude reduction was up to 89.6%. From this example, it can be concluded that the active balancing device, which is installed on a proper position of the rotor, can effectively control the random transient synchronous vibration, demonstrating its high value in engineering practice.展开更多
文摘为保障低压配电线路检修作业安全,有必要研究低压配线在停运检修状态下的感应电压和电流。采用EMTP建模仿真,分别计算了上海地区4个超/特高压交、直流输电工程线路下方平行架设的380 V低压配线上的感应电压、电流,对影响感应的因素进行了分析,并设计研发了低压配电线路感应电压消除装置。仿真结果表明,超/特高压交、直流线路在其下方停运的380 V配线上产生较大的感应电压和电流,感应电压最高可达30~70 k V。试验结果表明,低压配线感应电压消除装置在线路停运时将其两端接地,能有效消除配电线路上的感应电压。
基金Supported by the National Natural Science Foundation of China (No. 50635010) and the National High Technology Research and Development Program of China ( No. 2007AA04Z422 ).
文摘An active balancing technology has been applied to solve the severe vibration caused by sudden unbalance in rotating machineries during their working process. First, based on the generation principle of sudden unbalance, a simulation test stand with a sudden unbalance generation device was set up. Then, the balancing planes were optimized by using the finite element method (FEM) to determine the position for balancing device installation. Finally, the active balancing experiments were carried out on the test stand. The experimental results indicate that the vibration response caused by sudden unbalance can be decreased from 77μm to 8μm by using the active balancing device, and the vibration amplitude reduction was up to 89.6%. From this example, it can be concluded that the active balancing device, which is installed on a proper position of the rotor, can effectively control the random transient synchronous vibration, demonstrating its high value in engineering practice.