文中用数值方法研究了圆柱在流体中的强迫振动对其流场特性及受力的影响。主要包括圆柱振动频率对圆柱尾涡形态及升阻力系数的影响,振动频率比e sf f的范围取为0.8~3.0,ef为圆柱振动频率、sf为静止圆柱涡脱落频率。文中采用的数值方法是...文中用数值方法研究了圆柱在流体中的强迫振动对其流场特性及受力的影响。主要包括圆柱振动频率对圆柱尾涡形态及升阻力系数的影响,振动频率比e sf f的范围取为0.8~3.0,ef为圆柱振动频率、sf为静止圆柱涡脱落频率。文中采用的数值方法是Lattice Boltzmann Method(LBM),它具有并行效率高,边界处理简单的特点。本文比较并讨论了LBM中几种边界条件的处理方法,并提出一种能对移动边界进行更容易处理的新方法。模拟的结果与参考文献进行了比较,结果表明,用此方法处理移动边界是可行的。展开更多
A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vort...A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vortex dynamics and cavitation pattern in an axial-flow pump. On the basis of the computation, it clearly shows the flow structure in the clearance for different tip configurations by the detailed data of axial velocity and turbulent kinetic energy. The in-plain trajectory, in aspects of the angle between the blade suction side and vortex core and the initial point of tip leakage vortex, was presented using the maximum swirling strength method. The most striking feature is that the inception location of tip leakage vortex is delayed for chamfered tip due to the change of blade loading on suction side. Some significant non-dimensional parameters, such as pressure, swirling strength and turbulent kinetic energy, were used to depict the characteristics of tip vortex core. By the distribution of circumferential vorticity which dominates the vortical flows near the tip region, it is observed that the endwall detachment as the leakage flow meets the mainstream varies considerably for tested cases. The present study also indicates that the shear layer feeds the turbulence into tip leakage vortex core, but the way is different. For the chamfered tip, high turbulence level in vortex core is mainly from the tip clearance where large turbulent kinetic energy emerges, while it is almost from a layer extending from the suction side corner for rounded tip. At last, the visualized observations show that tip clearance cavitation is eliminated dramatically for rounded tip but more intensive for chamfered tip, which can be associated with the vortex structure in the clearance.展开更多
文摘文中用数值方法研究了圆柱在流体中的强迫振动对其流场特性及受力的影响。主要包括圆柱振动频率对圆柱尾涡形态及升阻力系数的影响,振动频率比e sf f的范围取为0.8~3.0,ef为圆柱振动频率、sf为静止圆柱涡脱落频率。文中采用的数值方法是Lattice Boltzmann Method(LBM),它具有并行效率高,边界处理简单的特点。本文比较并讨论了LBM中几种边界条件的处理方法,并提出一种能对移动边界进行更容易处理的新方法。模拟的结果与参考文献进行了比较,结果表明,用此方法处理移动边界是可行的。
基金the National Natural Science Foundation of China(Grant No.51479083)prospective Joint Research Proj ectofJiangsu Province(Grant No.BY2015064-08)+1 种基金Primary Research&Development Plan of Jiangsu Province(Grant Nos.BE2015001-3 and BE2015146)333Project of Jiangsu Province and Six Talent Peaks Project in Jiangsu Province(Grant No.HYGC-008)
文摘A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vortex dynamics and cavitation pattern in an axial-flow pump. On the basis of the computation, it clearly shows the flow structure in the clearance for different tip configurations by the detailed data of axial velocity and turbulent kinetic energy. The in-plain trajectory, in aspects of the angle between the blade suction side and vortex core and the initial point of tip leakage vortex, was presented using the maximum swirling strength method. The most striking feature is that the inception location of tip leakage vortex is delayed for chamfered tip due to the change of blade loading on suction side. Some significant non-dimensional parameters, such as pressure, swirling strength and turbulent kinetic energy, were used to depict the characteristics of tip vortex core. By the distribution of circumferential vorticity which dominates the vortical flows near the tip region, it is observed that the endwall detachment as the leakage flow meets the mainstream varies considerably for tested cases. The present study also indicates that the shear layer feeds the turbulence into tip leakage vortex core, but the way is different. For the chamfered tip, high turbulence level in vortex core is mainly from the tip clearance where large turbulent kinetic energy emerges, while it is almost from a layer extending from the suction side corner for rounded tip. At last, the visualized observations show that tip clearance cavitation is eliminated dramatically for rounded tip but more intensive for chamfered tip, which can be associated with the vortex structure in the clearance.