Using a 19-year altimetric dataset, the mean properties and spatiotemporal variations of eddies in the Kuroshio recirculation region are examined. A total of 2 001 cyclonic tracks and 1 847 anticyclonic tracks were id...Using a 19-year altimetric dataset, the mean properties and spatiotemporal variations of eddies in the Kuroshio recirculation region are examined. A total of 2 001 cyclonic tracks and 1 847 anticyclonic tracks were identifi ed using a geometry-based eddy detection method. The mean radius was 57 km for cyclonic eddies and was 61 km for anticyclonic eddies, respectively, and the mean lifetime was about 10 weeks for both type eddies. There were asymmetric spatial distributions for eddy generation and eddy termination, which were domain-dependent. Mean eddy generation rates were 2.0 per week for cyclonic eddies and were 1.9 per week for anticyclonic eddies. Both type eddies tended to deform during their lifetime and had different propagation characteristics, which mainly propagated westward and southwestward with velocities 4.0–9.9 cm/s, in the Kuroshio recirculation region. Further discussion illustrates that the eddy westward speed maybe infl uenced by the combined effect of vertical shear of horizontal currents and nonlinearity of eddy. To better understand the evolution of eddy tracks, a total of 134 long-lived tracks(lifetime ≥20 weeks) were examined. Comparison between short-span eddies(lifetime ≥4 weeks and <20 weeks) and long-lived eddies is also conducted and the result shows that the short-span and long-lived eddies have similar time evolution. Finally, eddy seasonal variations and interannual changes are discussed. Correlation analysis shows that eddy activity is sensitive to the wind stress curl and meridional gradient of sea surface temperature on interannual timescales. Besides, the strength and orientation of background fl ows also have impacts on the eddy genesis.展开更多
Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on th...Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background flow field and simulated the path transition of the WBC due to mesoscale eddies. Our simulations indicated that either an anticyclonic or cyclonic eddy can lead to path transition of the WBC with different modes. The simulation results also show that the mesoscale eddies can lead to path transition of the WBC from loop and eddy shedding state to leaping state because of the hysteresis effect. The leaping state is relatively stable compared with the mesoscale eddies. Moreover, an anticyclonic eddy is more effective in producing the WBC path transition for the path transition than a cyclonic eddy. Our results may help to explain some phenomena observed regarding the path transition of the Kuroshio due to the mesoscale eddies at the Luzon Strait.展开更多
Synthetic aperture radar (SAR) provides a large amount of image data for the observation and research of oceanic eddies. The use of SAR images to automatically depict the shape of eddies and extract the eddy informa...Synthetic aperture radar (SAR) provides a large amount of image data for the observation and research of oceanic eddies. The use of SAR images to automatically depict the shape of eddies and extract the eddy information is of great significance to the study of the oceanic eddies and the application of SAR eddy images. In this paper, a method of automatic shape depiction and information extraction for oceanic eddies in SAR images is proposed, which is for the research of spiral eddies. Firstly, the skeleton image is got by the skeletonization of SAR image. Secondly, the logarithmic spirals detected in the skeleton image are drawn on the SAR image to depict the shape of oceanic eddies. Finally, the eddy information is extracted based on the results of shape depiction. The sentinel 1 SAR eddy images in the Black Sea area were used for the experiment in this paper. The experimental results show that the proposed method can automatically depict the shape of eddies and extract the eddy information. The shape depiction results are consistent with the actual shape of the eddies, and the extracted eddy information is consistent with the reference information extracted by manual operation. As a result, the validity of the method is verified.展开更多
This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine...This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature.展开更多
The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous opera...The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic reliability optimization of disk radial deformation was implemented based on extremum response surface method(ERSM), including ERSM-based quadratic function(QF-ERSM) and ERSM-based support vector machine of regression(SR-ERSM). The mathematical models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory.展开更多
Diesel spray is injected at high pressure. So, upper stream region of spray is high Weber number condition. However, even if the fuel is injected at high pressure, the downstream region of spray is corresponding to re...Diesel spray is injected at high pressure. So, upper stream region of spray is high Weber number condition. However, even if the fuel is injected at high pressure, the downstream region of spray is corresponding to relatively low Weber number condition. Thus, KH (Kelvin-Helmholtz) model modeled for high Weber number conditions and MTAB (modified Taylor analogy breakup) model are used for primary and secondary breakup processes respectively. This study is focused on the development of new hybrid breakup model The calculations are performed by LES (large eddy simulation) incorporated into KIVA code. LES of non-evaporating diesel spray are performed using KH & RT (Rayleigh-Taylor) model, MTAB model and KH-MTAB model. Then, LES with these models were compared with experimental results. As the result, the availability of KH-MTAB model is showed. It is found that KH-MTAB is good agreement with experimental results of penetration and SMD (Sauter mean diameter) in relatively low density conditions.展开更多
This paper deals mainly with pneumatic measurements on a radial turbine nozzle cascade. The fill radial cascade guarantees the exit flow field periodicity downstream of it. A special traversing mechanism with a five -...This paper deals mainly with pneumatic measurements on a radial turbine nozzle cascade. The fill radial cascade guarantees the exit flow field periodicity downstream of it. A special traversing mechanism with a five - hole conical probe moving along a circular path behind the cascade was used for flow field investigation in this type of cascade with very low aspect ratio. The analyses of results of 2D and 3D pneumatic measurements including loss coefficient values are presented.展开更多
Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,w...Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,which cause blade vibrations and lead to high cycle failures(HCF).Moreover,the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions.Aiming to achieve a detail insight into vibration characteristics of radial flow turbine,a numerical method based on fluid structure interaction(FSI) is presented.Firstly,the unsteady aerodynamic loads are determined by computational fluid dynamics(CFD).And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform(FFT).Then,the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element(FE) method.Meanwhile,harmonic analyses,applying the pressure fluctuation from CFD,are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain.The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.展开更多
We used a two-dimensional quasi-geostrophic barotropic model simulation to study effects of an initial brows-like meso-scale vortex on tropical cyclone (TC) track. Our results show that the impact of each of the three...We used a two-dimensional quasi-geostrophic barotropic model simulation to study effects of an initial brows-like meso-scale vortex on tropical cyclone (TC) track. Our results show that the impact of each of the three foundational factors (the environ- mental current, the asymmetric structure and the asymmetric convection system) on TC track varies with time and the im- portance of each of the factors is different for the different TC motion time period. They show two kinds of the effects. One is a direct way. The asymmetric outer wind structure and the positive longitudinal wind speed averaged in radial-band (100-300) km in the period of (0-11) h are caused by the introduction of the initial brows-like meso-scale vortex, which results in TC track to turn to the north from the northwest directly. The other is an indirect influence. First, initial TC axisymmetric circula- tion becomes a non-axisyrnmetric circulation after the addition of the meso-scale vortex. The initial non-axisymmetric circula- tion experiences an axisymmetrizational process in the period of (0-11) h. Second, axisymmetrizationed TC horizontal size is enlarged after t=-12 h. Third, both the TC asymmetric structure and the TC energy dispersion induced-anticyclone are intensi- fied, which quickens the TC motion and results in the track to turn to the north indirectly. The TC motion is characterized by the unusual track under the direct and the indirect effect. The formation of the unusual track should be attributed to the com- mon effects of three factors, including the environmental flow, the TC asymmetric structure and the asymmetric convection system.展开更多
Radial turbine stages are often used for applications requiring off-design operation,as turbocharging for instance.The off-design ability of such stages is commonly analyzed through the traditional turbine map,plottin...Radial turbine stages are often used for applications requiring off-design operation,as turbocharging for instance.The off-design ability of such stages is commonly analyzed through the traditional turbine map,plotting the reduced mass-flow against the pressure-ratio,for reduced-speed lines.However,some alternatives are possible,such as the flow-coefficient(Ψ)to loading-coefficient(φ)diagram where the pressure-ratio lines are actually straight lines,very convenient property to perform prediction.A robust method re-creating this map from a predicted Ψ-φ diagram is needed.Recent work has shown that this back-deduction quality,without the use of any loss models,depends on the knowledge of an intermediate pressure-ratio.A modelization of this parameter is then proposed.The comparison with both experimental and CFD results is presented,with quite good agreement for mass flow rate and rotational speed,and for the intermediate pressure ratio.The last part of the paper is dedicated to the application of the intermediate pressure-ratio knowledge to the improvement of the deduction of the pressure ratio lines in the Ψ-φ diagram.Beside this improvement,the back-deduction method of the classical map is structured,applied and evaluated.展开更多
The objective of this study is to experimentally examine the characteristics of transient vortices in the boundary layer on a disk undergoing both rotation and orbital motion. The velocity fluctuations on a rotating, ...The objective of this study is to experimentally examine the characteristics of transient vortices in the boundary layer on a disk undergoing both rotation and orbital motion. The velocity fluctuations on a rotating, orbiting disk (disk radius equal to orbital radius) are measured by the hot-wire method, and the effects of orbital motion on the transient vortices in the boundary layer are examined. When the ratio of the orbital speed to the speed of rotation is i-0.025, the interval of transient vortices depends on only the orbital radius, regardless of the directions of rota- tion and orbital motion. The rate of low-frequency disturbances increases as the orbital speed increases, and the vortices induced by these low-frequency disturbances travel over the disk and then develop in the region of in- creased velocity. Consequently, no vortices generated on a rotating disk under orbital motion are stationary rela- tive to the disk.展开更多
This paper focuses on investigating the interaction effects for swirl and bluff-body in stabilized flame process. Particle image velocimetry was used to measure velocity fields in three burners. First, the comparison ...This paper focuses on investigating the interaction effects for swirl and bluff-body in stabilized flame process. Particle image velocimetry was used to measure velocity fields in three burners. First, the comparison of flames in bluff-body stabilized burners with and without swirl is presented. The results of the experiments present the variations of bluff-body stabilized flame when swirl is added into burner: the maximum reverse flow velocity and the maximum mean average radial velocity decrease; the maximum radial rootmean squared fluctuating (rms) velocity increases; the values of the axial velocity peak on the side of nozzle axis are lower, and the distance between the peak and centerline is bigger; the location of the maximum radial rms velocity moves to the outlet of annular air-flow from central recirculation zone (CRZ). Then, the comparison of flames in swirl burners with and without bluff-body is provided. The results of the experiments show the changes of swirling flame when bluff-body is added into swirl burner: the air vortex in the CRZ moves to the burner; the peak values of axial mean and rms velocity decrease; the distance between centerline and the mean axial and rms velocity peak increase; the peak of mean radial velocity decreases, and the peak of rms raidial velocity increase. The data from this experiment can also be established as benchmarks for the development and validation of combustion numerical simulations.展开更多
基金Supported by the National Natural Science Foundation of China(No.41230420)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX3-EW-201)the Basic Research Program of Science and Technology Projects of Qingdao(No.11-14-95-jch)
文摘Using a 19-year altimetric dataset, the mean properties and spatiotemporal variations of eddies in the Kuroshio recirculation region are examined. A total of 2 001 cyclonic tracks and 1 847 anticyclonic tracks were identifi ed using a geometry-based eddy detection method. The mean radius was 57 km for cyclonic eddies and was 61 km for anticyclonic eddies, respectively, and the mean lifetime was about 10 weeks for both type eddies. There were asymmetric spatial distributions for eddy generation and eddy termination, which were domain-dependent. Mean eddy generation rates were 2.0 per week for cyclonic eddies and were 1.9 per week for anticyclonic eddies. Both type eddies tended to deform during their lifetime and had different propagation characteristics, which mainly propagated westward and southwestward with velocities 4.0–9.9 cm/s, in the Kuroshio recirculation region. Further discussion illustrates that the eddy westward speed maybe infl uenced by the combined effect of vertical shear of horizontal currents and nonlinearity of eddy. To better understand the evolution of eddy tracks, a total of 134 long-lived tracks(lifetime ≥20 weeks) were examined. Comparison between short-span eddies(lifetime ≥4 weeks and <20 weeks) and long-lived eddies is also conducted and the result shows that the short-span and long-lived eddies have similar time evolution. Finally, eddy seasonal variations and interannual changes are discussed. Correlation analysis shows that eddy activity is sensitive to the wind stress curl and meridional gradient of sea surface temperature on interannual timescales. Besides, the strength and orientation of background fl ows also have impacts on the eddy genesis.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX1-YW-12, KZCX2-YW-201)the National Natural Science Foundation of China (No. 90411013)the National High Technology Research and Development Program (863 Program) of China (No. 2007AA092201)
文摘Using a 1.5 layer nonlinear shallow-water reduced-gravity model, we executed numerical simulations to investigate the possibility of a western boundary current (WBC) path transition due to mesoscale eddies based on the background of the Kuroshio intrusion into the South China Sea (SCS) from the Luzon Strait. Because the WBC existed different current states with respect to different wind stress control parameters, we chose three steady WBC states (loop current, eddy shedding and leaping) as the background flow field and simulated the path transition of the WBC due to mesoscale eddies. Our simulations indicated that either an anticyclonic or cyclonic eddy can lead to path transition of the WBC with different modes. The simulation results also show that the mesoscale eddies can lead to path transition of the WBC from loop and eddy shedding state to leaping state because of the hysteresis effect. The leaping state is relatively stable compared with the mesoscale eddies. Moreover, an anticyclonic eddy is more effective in producing the WBC path transition for the path transition than a cyclonic eddy. Our results may help to explain some phenomena observed regarding the path transition of the Kuroshio due to the mesoscale eddies at the Luzon Strait.
文摘Synthetic aperture radar (SAR) provides a large amount of image data for the observation and research of oceanic eddies. The use of SAR images to automatically depict the shape of eddies and extract the eddy information is of great significance to the study of the oceanic eddies and the application of SAR eddy images. In this paper, a method of automatic shape depiction and information extraction for oceanic eddies in SAR images is proposed, which is for the research of spiral eddies. Firstly, the skeleton image is got by the skeletonization of SAR image. Secondly, the logarithmic spirals detected in the skeleton image are drawn on the SAR image to depict the shape of oceanic eddies. Finally, the eddy information is extracted based on the results of shape depiction. The sentinel 1 SAR eddy images in the Black Sea area were used for the experiment in this paper. The experimental results show that the proposed method can automatically depict the shape of eddies and extract the eddy information. The shape depiction results are consistent with the actual shape of the eddies, and the extracted eddy information is consistent with the reference information extracted by manual operation. As a result, the validity of the method is verified.
文摘This work focused on exploring a computational fluid dynamics(CFD)method to predict the macromixing characteristics including the mean flow field and impeller capacity for a 45° down-pumping pitched blade turbine(PBT)in stirred tanks. Firstly, the three typical mean flow fields were investigated by virtue of three components of liquid velocity. Then the effects of impeller diameter(D)and off-bottom clearance(C)on both the mean flow field and three global macro-mixing parameters concerning impeller capacity were studied in detail. The changes of flow patterns with increasing C/D were predicted from these effects. The simulation results are consistent with the experimental results in published literature.
基金Project(51275024)supported by the National Natural Science Foundations of ChinaProject(2015M580037)supported by China’s Postdoctoral Science FundingProjects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program Foundations,China
文摘The radial deformation design of turbine disk seriously influences the control of gas turbine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). To improve the design of BTRRC under continuous operation, the nonlinear dynamic reliability optimization of disk radial deformation was implemented based on extremum response surface method(ERSM), including ERSM-based quadratic function(QF-ERSM) and ERSM-based support vector machine of regression(SR-ERSM). The mathematical models of the two methods were established and the framework of reliability-based dynamic design optimization was developed. The numerical experiments demonstrate that the proposed optimization methods have the promising potential in reducing additional design samples and improving computational efficiency with acceptable precision, in which the SR-ERSM emerges more obviously. Through the case study, we find that disk radial deformation is reduced by about 6.5×10–5 m; δ=1.31×10–3 m is optimal for turbine disk radial deformation design and the proposed methods are verified again. The presented efforts provide an effective optimization method for the nonlinear transient design of motion structures for further research, and enrich mechanical reliability design theory.
文摘Diesel spray is injected at high pressure. So, upper stream region of spray is high Weber number condition. However, even if the fuel is injected at high pressure, the downstream region of spray is corresponding to relatively low Weber number condition. Thus, KH (Kelvin-Helmholtz) model modeled for high Weber number conditions and MTAB (modified Taylor analogy breakup) model are used for primary and secondary breakup processes respectively. This study is focused on the development of new hybrid breakup model The calculations are performed by LES (large eddy simulation) incorporated into KIVA code. LES of non-evaporating diesel spray are performed using KH & RT (Rayleigh-Taylor) model, MTAB model and KH-MTAB model. Then, LES with these models were compared with experimental results. As the result, the availability of KH-MTAB model is showed. It is found that KH-MTAB is good agreement with experimental results of penetration and SMD (Sauter mean diameter) in relatively low density conditions.
基金supported by the Project KONTAKT #ME 08025 monitored by the Ministry of Education of the Czech Republicthe grant No101/08/0623 supported by the Czech Science Foundation
文摘This paper deals mainly with pneumatic measurements on a radial turbine nozzle cascade. The fill radial cascade guarantees the exit flow field periodicity downstream of it. A special traversing mechanism with a five - hole conical probe moving along a circular path behind the cascade was used for flow field investigation in this type of cascade with very low aspect ratio. The analyses of results of 2D and 3D pneumatic measurements including loss coefficient values are presented.
基金funded by the National Natural Science Foundation of China(No.51176013)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20111101130002),China
文摘Radial turbines with nozzle guide vanes are widely used in various size turbochargers.However,due to the interferences with guide vanes,the blades of impellers are exposed to intense unsteady aerodynamic excitations,which cause blade vibrations and lead to high cycle failures(HCF).Moreover,the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions.Aiming to achieve a detail insight into vibration characteristics of radial flow turbine,a numerical method based on fluid structure interaction(FSI) is presented.Firstly,the unsteady aerodynamic loads are determined by computational fluid dynamics(CFD).And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform(FFT).Then,the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element(FE) method.Meanwhile,harmonic analyses,applying the pressure fluctuation from CFD,are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain.The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.
基金supported by,National Natural Science Foundation of China (Grant Nos.40775038,40875031,40975036 and 40730948)Wuxi Research Center for Environment Science and Technology
文摘We used a two-dimensional quasi-geostrophic barotropic model simulation to study effects of an initial brows-like meso-scale vortex on tropical cyclone (TC) track. Our results show that the impact of each of the three foundational factors (the environ- mental current, the asymmetric structure and the asymmetric convection system) on TC track varies with time and the im- portance of each of the factors is different for the different TC motion time period. They show two kinds of the effects. One is a direct way. The asymmetric outer wind structure and the positive longitudinal wind speed averaged in radial-band (100-300) km in the period of (0-11) h are caused by the introduction of the initial brows-like meso-scale vortex, which results in TC track to turn to the north from the northwest directly. The other is an indirect influence. First, initial TC axisymmetric circula- tion becomes a non-axisyrnmetric circulation after the addition of the meso-scale vortex. The initial non-axisymmetric circula- tion experiences an axisymmetrizational process in the period of (0-11) h. Second, axisymmetrizationed TC horizontal size is enlarged after t=-12 h. Third, both the TC asymmetric structure and the TC energy dispersion induced-anticyclone are intensi- fied, which quickens the TC motion and results in the track to turn to the north indirectly. The TC motion is characterized by the unusual track under the direct and the indirect effect. The formation of the unusual track should be attributed to the com- mon effects of three factors, including the environmental flow, the TC asymmetric structure and the asymmetric convection system.
文摘Radial turbine stages are often used for applications requiring off-design operation,as turbocharging for instance.The off-design ability of such stages is commonly analyzed through the traditional turbine map,plotting the reduced mass-flow against the pressure-ratio,for reduced-speed lines.However,some alternatives are possible,such as the flow-coefficient(Ψ)to loading-coefficient(φ)diagram where the pressure-ratio lines are actually straight lines,very convenient property to perform prediction.A robust method re-creating this map from a predicted Ψ-φ diagram is needed.Recent work has shown that this back-deduction quality,without the use of any loss models,depends on the knowledge of an intermediate pressure-ratio.A modelization of this parameter is then proposed.The comparison with both experimental and CFD results is presented,with quite good agreement for mass flow rate and rotational speed,and for the intermediate pressure ratio.The last part of the paper is dedicated to the application of the intermediate pressure-ratio knowledge to the improvement of the deduction of the pressure ratio lines in the Ψ-φ diagram.Beside this improvement,the back-deduction method of the classical map is structured,applied and evaluated.
基金supported by the Harada Memorial Foundation and a Grant-in-Aid for Scientific Research (No. 24560202) from the Japan Society for the Promotion of Science
文摘The objective of this study is to experimentally examine the characteristics of transient vortices in the boundary layer on a disk undergoing both rotation and orbital motion. The velocity fluctuations on a rotating, orbiting disk (disk radius equal to orbital radius) are measured by the hot-wire method, and the effects of orbital motion on the transient vortices in the boundary layer are examined. When the ratio of the orbital speed to the speed of rotation is i-0.025, the interval of transient vortices depends on only the orbital radius, regardless of the directions of rota- tion and orbital motion. The rate of low-frequency disturbances increases as the orbital speed increases, and the vortices induced by these low-frequency disturbances travel over the disk and then develop in the region of in- creased velocity. Consequently, no vortices generated on a rotating disk under orbital motion are stationary rela- tive to the disk.
基金supported by National Basic Research Program of China (973 Program).No.2007CB210102
文摘This paper focuses on investigating the interaction effects for swirl and bluff-body in stabilized flame process. Particle image velocimetry was used to measure velocity fields in three burners. First, the comparison of flames in bluff-body stabilized burners with and without swirl is presented. The results of the experiments present the variations of bluff-body stabilized flame when swirl is added into burner: the maximum reverse flow velocity and the maximum mean average radial velocity decrease; the maximum radial rootmean squared fluctuating (rms) velocity increases; the values of the axial velocity peak on the side of nozzle axis are lower, and the distance between the peak and centerline is bigger; the location of the maximum radial rms velocity moves to the outlet of annular air-flow from central recirculation zone (CRZ). Then, the comparison of flames in swirl burners with and without bluff-body is provided. The results of the experiments show the changes of swirling flame when bluff-body is added into swirl burner: the air vortex in the CRZ moves to the burner; the peak values of axial mean and rms velocity decrease; the distance between centerline and the mean axial and rms velocity peak increase; the peak of mean radial velocity decreases, and the peak of rms raidial velocity increase. The data from this experiment can also be established as benchmarks for the development and validation of combustion numerical simulations.