Several investigations refer to the issue of creation and identification of vortices in flows with different regime and presence of obstacles. Reasons have to do with the crucial role that vortices play in nature and ...Several investigations refer to the issue of creation and identification of vortices in flows with different regime and presence of obstacles. Reasons have to do with the crucial role that vortices play in nature and industrial processes (sediment transport, mixing, radiation, noise, etc.). Despite the contributions, further work is needed in order to perform more analysis of the mathematical arguments used to explain this phenomenon. In this idea order, the paper presents some advances in mathematical analysis and experimental results. In the first section, we do a description of the fluid motion from a fractional view through a sequence of three steps: Darcy's law, Navier-Stokes equations and Reynolds equations. Next, a representation of the temporal change of kinetic energy is found, which allows the possibility of the two signs. We obtain a description of the process of vortex creation. A length that represents the transition between flow and vortex intensity is found; then a succession of lengths is established that allows scaling from micro to macro. In the second section, experimental results are present; we consider vortex creation and its detection upstream of a bed form similar to that found in rivers, installed in an open channel, equipped with a water circulation system. For vortex detection, a methodology based on the particle image velocimetry PIV technique is proposed. So, we fulfill two objectives: vortex identification and its passage frequencies behind the bed form installed in the channel. Such procedure allows a computer process time reduction in vortices identification task.展开更多
This study focuses on the spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea(SCS). An automatic eddy detection method,based on the geometry of velocity vectors,was adopted to ...This study focuses on the spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea(SCS). An automatic eddy detection method,based on the geometry of velocity vectors,was adopted to obtain an eddy dataset from 21 years of satellite altimeter data. Analysis revealed that the number of anticyclonic eddies was nearly equal to cyclonic eddies; in the SCS,cyclonic eddies are generally stronger than anticyclonic eddies and anticyclonic eddies are larger and longer-lived than cyclonic eddies. Anticyclonic eddies tend to survive longer in the spring and summer,while cyclonic eddies have longer lifetimes in the autumn and winter. The characteristics and seasonal variations of eddies in the SCS are strongly related to variations in general ocean circulation,in the homogeneity of surface wind stress,and in the unevenness of bottom topography in the SCS. The spatial and temporal variation of mesoscale eddies in the SCS could,therefore,be an important index for understanding local hydrodynamics and regional climate change.展开更多
There are several elements that affect on the integrity of steam generator tubes. One of the elements is loose parts located on outside of the tubes. It causes erosion which is possible to lead fatal defect like crack...There are several elements that affect on the integrity of steam generator tubes. One of the elements is loose parts located on outside of the tubes. It causes erosion which is possible to lead fatal defect like crack on the outside surface of the tubes. In this study, artificial loose parts on Inconel 690 tube are demonstrated and eddy current testing data of the region is acquired using rotating probe. Ferromagnetic and nonmagnetic foreign materials were used to demonstrate artificial loose parts. Eddy current channel of 100 KHz frequency shows definite signals of those foreign materials but stainless steel was not clearly detected. This result can be explained based on the electrical conductivity of the materials and it can be confirmed with lissajous window and C-scan. In addition, no indication was detected when the distance of the gap between the foreign materials and the tube is increased to more than 3 mm under this test condition. Based on these experimental inspections, we were able to find suitable methods for analyzing the signals obtained under various conditions that could occur when conducting steam generator eddy current test in NPP.展开更多
Oceanic eddies may cause local sea surface temperature (SST), height, and salinity anomalies in remote sensing (RS) images. Remote sensed SST imagery has proven to be an effective technique in oceanic eddy detecti...Oceanic eddies may cause local sea surface temperature (SST), height, and salinity anomalies in remote sensing (RS) images. Remote sensed SST imagery has proven to be an effective technique in oceanic eddy detection, because of its high temporal and spatial resolution. Various techniques have been used to identify eddies from SST images. However, mainly owing to the strong morphological variation of oceanic eddies, there is arguably no uniquely correct eddy detection method. A scheme of algorithm based on quasi-contour tracing and clustering of eddy detection from SST dataset is presented. The method does not impose fixed restrictions or limitations during the course of "suspected" eddy detection, and any eddy-like structures can be detected as "suspected" eddies. Then, "true" eddies can be identified based on the combination of intensity and spatial/temporal scale criteria. This approach has been applied to detect eddies in the East China Sea by using Operational SST & Sea Ice Analysis (OSTIA) dataset. Experiments proved that oceanic eddies ranging in diameter from tens to hundreds of kilometers can be detected. Through investigation of the 2007-2011 OSTIA daily SST dataset from the Kuroshio region in the East China Sea, we found that the most active regions for oceanic eddies are those along the Kuroshio path, northeast of Taiwan Island, the Yangtze Estuary and the Ryukyu Islands. About 86% of the cyclonic eddies and 87% of the anticyclonic eddies have the size of 50-100 km in diameter. Only 25% of the anticyclonic eddy and 26% of the cyclonic eddy have the strength more than 0.4℃ in the sea surface layer.展开更多
Mesoscale eddies exist almost everywhere in the ocean and play important roles in the ocean circulation of the world. These eddies may cause sound spread singular regions and bring great influences to the upwater ship...Mesoscale eddies exist almost everywhere in the ocean and play important roles in the ocean circulation of the world. These eddies may cause sound spread singular regions and bring great influences to the upwater ship and underwater aircraft. Due to the lack of hydrographic survey datasets, study of mesoscale eddies has been greatly restricted. Fortunately, satellite altimeter provided an effective way to study mesoscale eddies. An automatic detection algorithm is introduced to detect mesoscale eddies of specific intensity and spatial/temporal scale based on satellite sea surface height(SSH) data and the algorithm is applied in a strong eddy activity region: the South China Sea and the Northwest Pacific. The algorithm includes four steps. The first step is preprocessing of the SSH image, which includes elimination of error SSH data and interpolation. The second step is to detect suspected mesoscale eddies from preprocessed SSH images by dynamic threshold adjustment and morphological method, and the suspected mesoscale eddy detection includes two procedures: suspected mesoscale eddy core region detection and suspected mesoscale eddy brim extraction. The third step is to pick out mesoscale eddies satisfied with specified criteria from suspected mesoscale eddies. The criteria include three items, that is, intensity criterion, spatial scale, criterion and temporal scale criterion. The last step is algorithm performance analysis and verification. The algorithm has the capability of adaptive parameter adjustment, and can extract mesoscale eddies of interested intensity and spatial/temporal scale. The paper can provide a basis for analyzing space-time characteristics of mesoscale eddy in the South China Sea and the Northwest Pacific.展开更多
文摘Several investigations refer to the issue of creation and identification of vortices in flows with different regime and presence of obstacles. Reasons have to do with the crucial role that vortices play in nature and industrial processes (sediment transport, mixing, radiation, noise, etc.). Despite the contributions, further work is needed in order to perform more analysis of the mathematical arguments used to explain this phenomenon. In this idea order, the paper presents some advances in mathematical analysis and experimental results. In the first section, we do a description of the fluid motion from a fractional view through a sequence of three steps: Darcy's law, Navier-Stokes equations and Reynolds equations. Next, a representation of the temporal change of kinetic energy is found, which allows the possibility of the two signs. We obtain a description of the process of vortex creation. A length that represents the transition between flow and vortex intensity is found; then a succession of lengths is established that allows scaling from micro to macro. In the second section, experimental results are present; we consider vortex creation and its detection upstream of a bed form similar to that found in rivers, installed in an open channel, equipped with a water circulation system. For vortex detection, a methodology based on the particle image velocimetry PIV technique is proposed. So, we fulfill two objectives: vortex identification and its passage frequencies behind the bed form installed in the channel. Such procedure allows a computer process time reduction in vortices identification task.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(No.U1133001)the NSFC-Shandong Joint Fund for Marine Science Research Centers Grant(No.U1406401)
文摘This study focuses on the spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea(SCS). An automatic eddy detection method,based on the geometry of velocity vectors,was adopted to obtain an eddy dataset from 21 years of satellite altimeter data. Analysis revealed that the number of anticyclonic eddies was nearly equal to cyclonic eddies; in the SCS,cyclonic eddies are generally stronger than anticyclonic eddies and anticyclonic eddies are larger and longer-lived than cyclonic eddies. Anticyclonic eddies tend to survive longer in the spring and summer,while cyclonic eddies have longer lifetimes in the autumn and winter. The characteristics and seasonal variations of eddies in the SCS are strongly related to variations in general ocean circulation,in the homogeneity of surface wind stress,and in the unevenness of bottom topography in the SCS. The spatial and temporal variation of mesoscale eddies in the SCS could,therefore,be an important index for understanding local hydrodynamics and regional climate change.
文摘There are several elements that affect on the integrity of steam generator tubes. One of the elements is loose parts located on outside of the tubes. It causes erosion which is possible to lead fatal defect like crack on the outside surface of the tubes. In this study, artificial loose parts on Inconel 690 tube are demonstrated and eddy current testing data of the region is acquired using rotating probe. Ferromagnetic and nonmagnetic foreign materials were used to demonstrate artificial loose parts. Eddy current channel of 100 KHz frequency shows definite signals of those foreign materials but stainless steel was not clearly detected. This result can be explained based on the electrical conductivity of the materials and it can be confirmed with lissajous window and C-scan. In addition, no indication was detected when the distance of the gap between the foreign materials and the tube is increased to more than 3 mm under this test condition. Based on these experimental inspections, we were able to find suitable methods for analyzing the signals obtained under various conditions that could occur when conducting steam generator eddy current test in NPP.
文摘Oceanic eddies may cause local sea surface temperature (SST), height, and salinity anomalies in remote sensing (RS) images. Remote sensed SST imagery has proven to be an effective technique in oceanic eddy detection, because of its high temporal and spatial resolution. Various techniques have been used to identify eddies from SST images. However, mainly owing to the strong morphological variation of oceanic eddies, there is arguably no uniquely correct eddy detection method. A scheme of algorithm based on quasi-contour tracing and clustering of eddy detection from SST dataset is presented. The method does not impose fixed restrictions or limitations during the course of "suspected" eddy detection, and any eddy-like structures can be detected as "suspected" eddies. Then, "true" eddies can be identified based on the combination of intensity and spatial/temporal scale criteria. This approach has been applied to detect eddies in the East China Sea by using Operational SST & Sea Ice Analysis (OSTIA) dataset. Experiments proved that oceanic eddies ranging in diameter from tens to hundreds of kilometers can be detected. Through investigation of the 2007-2011 OSTIA daily SST dataset from the Kuroshio region in the East China Sea, we found that the most active regions for oceanic eddies are those along the Kuroshio path, northeast of Taiwan Island, the Yangtze Estuary and the Ryukyu Islands. About 86% of the cyclonic eddies and 87% of the anticyclonic eddies have the size of 50-100 km in diameter. Only 25% of the anticyclonic eddy and 26% of the cyclonic eddy have the strength more than 0.4℃ in the sea surface layer.
文摘Mesoscale eddies exist almost everywhere in the ocean and play important roles in the ocean circulation of the world. These eddies may cause sound spread singular regions and bring great influences to the upwater ship and underwater aircraft. Due to the lack of hydrographic survey datasets, study of mesoscale eddies has been greatly restricted. Fortunately, satellite altimeter provided an effective way to study mesoscale eddies. An automatic detection algorithm is introduced to detect mesoscale eddies of specific intensity and spatial/temporal scale based on satellite sea surface height(SSH) data and the algorithm is applied in a strong eddy activity region: the South China Sea and the Northwest Pacific. The algorithm includes four steps. The first step is preprocessing of the SSH image, which includes elimination of error SSH data and interpolation. The second step is to detect suspected mesoscale eddies from preprocessed SSH images by dynamic threshold adjustment and morphological method, and the suspected mesoscale eddy detection includes two procedures: suspected mesoscale eddy core region detection and suspected mesoscale eddy brim extraction. The third step is to pick out mesoscale eddies satisfied with specified criteria from suspected mesoscale eddies. The criteria include three items, that is, intensity criterion, spatial scale, criterion and temporal scale criterion. The last step is algorithm performance analysis and verification. The algorithm has the capability of adaptive parameter adjustment, and can extract mesoscale eddies of interested intensity and spatial/temporal scale. The paper can provide a basis for analyzing space-time characteristics of mesoscale eddy in the South China Sea and the Northwest Pacific.