Fish are able to make good use of vortices.In a complex flow field,many fish continue to maintain both efficient cruising and maneuverability.Traditional man-made propulsion systems perform poorly in complex flow fiel...Fish are able to make good use of vortices.In a complex flow field,many fish continue to maintain both efficient cruising and maneuverability.Traditional man-made propulsion systems perform poorly in complex flow fields.With fish-like propulsion systems,it is important to pay more attention to complex flow fields.In this paper,the influence of vortices on the hydrodynamic performance of 2-D flapping-foils was investigated.The flapping-foil heaved and pitched under the influence of inflow vortices generated by an oscillating D-section cylinder.A numerical simulation was run based the finite volume method,using the computational fluid dynamics(CFD) software FLUENT with Reynolds-averaged Navier-Stokes(RANS) equations applied.In addition,dynamic mesh technology and post processing systems were also fully used.The calculations showed four modes of interaction.The hydrodynamic performance of flapping-foils was analyzed and the results compared with experimental data.This validated the numerical simulation,confirming that flapping-foils can increase efficiency by absorbing energy from inflow vortices.展开更多
It is hypothesized that steady anguilliform swimming motion of aquatic animals is purely reactive such that no net vortex wake is left downstream. This is versus carangiform and tunniform swimming of fish, where vorte...It is hypothesized that steady anguilliform swimming motion of aquatic animals is purely reactive such that no net vortex wake is left downstream. This is versus carangiform and tunniform swimming of fish, where vortex streams are shed from tail, fins, and body. But there the animal movements are such to produce partial vortex cancellation downstream in maximizing propulsive efficiency. In anguilliform swimming characteristic of the eel family, it is argued that the swimming motions are configured by the animal such that vortex shedding does not occur at all. However, the propulsive thrust in this case is higher order in the motion amplitude, so that relatively large coils are needed to produce relatively small thrust; the speeds of anguilliform swimmers are less than the carangiform and tunniforrn, which develop first order thrusts via lifting processes. Results of experimentation on live lamprey are compared to theoretical prediction which assumes the no-wake hypothesis. Two-dimensional analysis is first performed to set the concept. This is followed by three-dimensional analysis using slender-body theory. Slender-body theory has been applied by others in studying anguilliform swimming, as it is ideally suited to the geometry of the lamprey and other eel-like animals. The agreement between this new approach based on the hypothesis of wakeless swimming and the experiments is remarkably good in spite of the physical complexities.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.50579007,50879014the specialized research fund for the doctoral program of higher education under Grant No.200802170010
文摘Fish are able to make good use of vortices.In a complex flow field,many fish continue to maintain both efficient cruising and maneuverability.Traditional man-made propulsion systems perform poorly in complex flow fields.With fish-like propulsion systems,it is important to pay more attention to complex flow fields.In this paper,the influence of vortices on the hydrodynamic performance of 2-D flapping-foils was investigated.The flapping-foil heaved and pitched under the influence of inflow vortices generated by an oscillating D-section cylinder.A numerical simulation was run based the finite volume method,using the computational fluid dynamics(CFD) software FLUENT with Reynolds-averaged Navier-Stokes(RANS) equations applied.In addition,dynamic mesh technology and post processing systems were also fully used.The calculations showed four modes of interaction.The hydrodynamic performance of flapping-foils was analyzed and the results compared with experimental data.This validated the numerical simulation,confirming that flapping-foils can increase efficiency by absorbing energy from inflow vortices.
文摘It is hypothesized that steady anguilliform swimming motion of aquatic animals is purely reactive such that no net vortex wake is left downstream. This is versus carangiform and tunniform swimming of fish, where vortex streams are shed from tail, fins, and body. But there the animal movements are such to produce partial vortex cancellation downstream in maximizing propulsive efficiency. In anguilliform swimming characteristic of the eel family, it is argued that the swimming motions are configured by the animal such that vortex shedding does not occur at all. However, the propulsive thrust in this case is higher order in the motion amplitude, so that relatively large coils are needed to produce relatively small thrust; the speeds of anguilliform swimmers are less than the carangiform and tunniforrn, which develop first order thrusts via lifting processes. Results of experimentation on live lamprey are compared to theoretical prediction which assumes the no-wake hypothesis. Two-dimensional analysis is first performed to set the concept. This is followed by three-dimensional analysis using slender-body theory. Slender-body theory has been applied by others in studying anguilliform swimming, as it is ideally suited to the geometry of the lamprey and other eel-like animals. The agreement between this new approach based on the hypothesis of wakeless swimming and the experiments is remarkably good in spite of the physical complexities.