To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The metho...To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The method considers the influence of instantaneous wing deforming in flapping,as well as the induced drag,additionally models the stretching and the dissipation of vortex rings,and can present the aerodynamics status on the wing surface. An implementation of the method is developed. Moreover,the results and the efficiency of the proposed method are verified by CFD methods. Considering the less time cost of UVLM,for application of UVLM in the MAV optimization,the influence of wake vortex ignoring time saving and precision is studied. Results show that saving in CPU time with wake vortex ignoring the appropriate distance is considerable while the precision is not significantly reduced. It indicates the potential value of UVLM in the optimization of MAV design.展开更多
The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simu...The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible.展开更多
The lattice Boltzmann method (LBM) is employed to simulate the uniform flow past a circular cylinder. The performance of the two-dimensional LBM model on the prediction of force coefficients and vortex shedding freque...The lattice Boltzmann method (LBM) is employed to simulate the uniform flow past a circular cylinder. The performance of the two-dimensional LBM model on the prediction of force coefficients and vortex shedding frequency is investigated. The local grid refinement technique and second-order boundary condition for curved walls are applied in the calculations. It is found that the calculated vortex shedding frequency, drag coefficient and lift coefficient are consistent with experimental results at Reynolds nu...展开更多
This paper presents 3D (three-dimensional) CFD (computational fluid dynamic) simulation to analyse the FIR (flow-induced response) especially the yaw motion of a buoyancy can. The numerical cases are conducted w...This paper presents 3D (three-dimensional) CFD (computational fluid dynamic) simulation to analyse the FIR (flow-induced response) especially the yaw motion of a buoyancy can. The numerical cases are conducted with a buoyancy can under different reduced velocities utilizing our in-house code naoe-FOAM-SJTU, a solver based on the open source toolkit OpenFOAM. SST-DDES (shear-stress transport-delayed detached-eddy simulation) model is applied to handle the flowseparation and overset grid method is utilized to solve a large amplitude 6-DOF (6 degrees of freedom) motions. Free decay test and VIM (vortex-induced motion) test are built numerically. In VIM cases, the responses of trajectory, amplitude, frequency are calculated in a series of reduced velocities. With the increase of reduced velocity, yaw frequency is increased, which is similar to surge and sway frequency. And yaw frequency is equal to the sway frequency, which is consistent with experimental results. Furthermore, comparing two cases, one fixed in rotation and the other one free in rotation, it can be concluded that release in the degree of rotation can decrease the sway amplitude but make no difference in the surge amplitude.展开更多
Using a model of long-range interactions between vortices, we investigate numerically the alternating current (ac) response of two-dimensional vortex lattice with randomly distributed point-like pinning centers. Mode-...Using a model of long-range interactions between vortices, we investigate numerically the alternating current (ac) response of two-dimensional vortex lattice with randomly distributed point-like pinning centers. Mode-locking steps are observed in the simulated current-voltages characteristics, and the number of steps increases with the superimposed ac amplitude and frequency. Our results are in good agreement with recent experiments.展开更多
A repulsive vortex\|vortex interaction model was used to numerically study the melting transition of the two\|dimensional vortex system with Monte Carlo method. Then a δ\|function\|like peak in the specific heat was ...A repulsive vortex\|vortex interaction model was used to numerically study the melting transition of the two\|dimensional vortex system with Monte Carlo method. Then a δ\|function\|like peak in the specific heat was observed and the internal energy showed a sharp drop at the melting temperature, which indicated that there exists a first\|order melting transition at finite temperatures. The Lindemann criterion was also investigated and valid, but different from previous simulation results.展开更多
It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power ...It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power quality and capacity, while the outputs from the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with a counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The unit composed of the tandem impellers/runners connected to the inner and the outer armatures of the unique motor/generator. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.展开更多
This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind tur...This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind turbine, a three stage planetary gear box and an induction generator. The masses-springs approach of shaft system differential equations is developed from Newton's law and Lagrange formulas. For an easy comprehension for electrical engineers and tutorial purpose, an electrical equivalent circuit of the system is proposed by using mechanical and electrical components similarities. Extensive numerical simulations are performed to investigate system mechanical resonances and impacts of damping factors on the system dynamic and stability.展开更多
提出一种基于升力线理论的对转开式转子(contra-rotating open rotor,CROR)气动设计方法。以推力为设计目标,基于拉格朗日乘子法构建气动设计控制方程组。考虑高飞行马赫数对流动特征的影响,根据激盘模型,采用一道正激波模拟转子的增压...提出一种基于升力线理论的对转开式转子(contra-rotating open rotor,CROR)气动设计方法。以推力为设计目标,基于拉格朗日乘子法构建气动设计控制方程组。考虑高飞行马赫数对流动特征的影响,根据激盘模型,采用一道正激波模拟转子的增压过程。完成速度场预测后,利用压气机三维造型方法完成初始设计。初始设计完成后,对翼型折转角进行修正从而满足目标推力。研究表明,整个设计过程中只需2次计算流体力学(CFD)计算与再设计便可满足目标推力,所需翼型折转角修正量为−0.486°,设计结果的推力与目标推力的相对误差为−0.32%,设计方法高效且具有高的设计精度。展开更多
Simulations of bubble entrainment into a stationary Gaussian vortex are performed by using the combined particle tracking method(PTM)and boundary element method(BEM).Before the bubble is captured by the vortex core,os...Simulations of bubble entrainment into a stationary Gaussian vortex are performed by using the combined particle tracking method(PTM)and boundary element method(BEM).Before the bubble is captured by the vortex core,oscillation and migration of the quasi-spherical nucleus are solved by using improved RP equation and the momentum theorem in the Lagrangian reference frame simultaneously,and the trajectory of the nucleus presents a kind of reduced helix shape.After captured by the vortex core,the bubble grows immediately and moves and deforms along the vortex core axis.The non-spherical evolution and deformation of the bubble is simulated by adopting a mixed Eulerian-Lagrangian method.The output of quasi-spherical stage is taken as the input of non-spherical stage,and all the behaviors of the entrained bubble can be simulated such as inception,motion,deformation and split.Numerical results agree well with published experimental data.On this basis,the influences of various factors such as viscosity,surface tension,buoyancy are studied systemically.Hopefully the results from this paper would provide some insight into the control on vortex bubble entrainment.展开更多
A hybrid LES (Large Eddy Simulation)/assumed sub-grid PDF (Probability Density Function) closure model has been devel-oped for supersonic turbulent combustion. Scalar transport equations for all species in a given che...A hybrid LES (Large Eddy Simulation)/assumed sub-grid PDF (Probability Density Function) closure model has been devel-oped for supersonic turbulent combustion. Scalar transport equations for all species in a given chemical kinetic mechanism were solved, which are necessary in the supersonic combustion where the non-equilibrium chemistry is essentially involved. The clipped Gaussian PDF of temperature and multivariate ? PDF of composition were used to close the sub-grid chemical sources that appear in the conservation equations. The sub-grid variances of temperature and composition were constructed based on scale similarity approach. A semi-implicit approach based on the PDF model was proposed to tackle the resulting numerical stiffness associated with finite rate chemistry. The model was applied to simulate a supersonic, coaxial H2-air burner, where both the mean and rms (root mean square) results were compared with the experimental data. In general, good agree-ments were achieved, which indicated that the present sub-grid PDF method could work well in simulating supersonic turbu-lent combustion. Moreover, the calculation showed that the sub-grid fluctuations of temperature and major species in the combustion region were of the order of 10%-20% of their rms, while the sub-grid fluctuation of hydroxyl might be as high as 40%-50% of its rms.展开更多
As one of the main aerodynamic noise sources of high-speed trains, the pantograph is a complex structure containing many components, and the flow around it is extremely dynamic, with high-level turbulence. This study ...As one of the main aerodynamic noise sources of high-speed trains, the pantograph is a complex structure containing many components, and the flow around it is extremely dynamic, with high-level turbulence. This study analyzed the near-field unsteady flow around a pantograph using a large-eddy simulation(LES) with high-order finite difference schemes. The far-field aerodynamic noise from a pantograph was predicted using a computational fluid dynamics(CFD)/Ffowcs Williams-Hawkings(FW-H) acoustic analogy. The surface oscillating pressure data were also used in a boundary element method(BEM) acoustic analysis to predict the aerodynamic noise sources of a pantograph and the far-field sound radiation. The results indicated that the main aerodynamic noise sources of the pantograph were the panhead, base frame and knuckle. The panhead had the largest contribution to the far-field aerodynamic noise of the pantograph. The vortex shedding from the panhead generated tonal noise with the dominant peak corresponding to the vortex shedding frequency and the oscillating lift force exerted back on the fluid around the panhead.Additionally, the peak at the second harmonic frequency was associated with the oscillating drag force. The contribution of the knuckle-downstream direction to the pantograph aerodynamic noise was less than that of the knuckle-upstream direction of the pantograph, and the average sound pressure level(SPL) was 3.4 dBA. The directivity of the noise radiated exhibited a typical dipole pattern in which the noise directivity was obvious at the horizontal plane of θ=0°,the longitudinal plane of θ=120°,and the vertical plane of θ=90°.展开更多
This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit,to provide the constant output for the grid system,even at the suddenly fluctuating/t...This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit,to provide the constant output for the grid system,even at the suddenly fluctuating/turbulent wind.In this paper,the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode,and the performances and the flow conditions were investigated numerically and experimentally.The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model.While providing the pump unit for the turbine mode,the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclu-sively for the turbine mode.Besides,the runner/impeller of the unit works evidently so as to coincide the angularmomentum change through the front runners/impellers with that through the rear runners/impellers,namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.展开更多
Magnetic field topology frozen in ideal magnetohydrodynamics (MHD) and its breakage in near-ideal MHD are reviewed in two parts, clarifying and expanding basic concepts. The first part gives a physically complete de...Magnetic field topology frozen in ideal magnetohydrodynamics (MHD) and its breakage in near-ideal MHD are reviewed in two parts, clarifying and expanding basic concepts. The first part gives a physically complete description of the frozen field topology derived from magnetic flux conservation as the fundamental property, treating four conceptually related topics: Eulerian and La- grangian descriptions of three dimensional (3D) MHD, Chandrasekhar-Kendall and Euler-potential field representations, magnetic helicity, and inviscid vortex dynamics as a fluid system in physical contrast to ideal MHD. A corollary of these developments clar- ifies the challenge of achieving a high degree of the frozen-in condition in numerical MHD. The second part treats field-topology breakage centered around the Parker Magnetostatic Theorem on a general incompatibility of a continuous magnetic field with the dual demand of force-free equilibrium and an arbitrarily prescribed, 3D field topology. Preserving field topology as a global con- straint readily results in formation of tangential magnetic discontinuities, or, equivalently, electric current-sheets of zero thickness. A similar incompatibility is present in the steady force-thermal balance of a heated radiating fluid subject to an anisotropic thermal flux conducted strictly along its frozen-in magnetic field in the low-fl limit. In a weakly resistive fluid the thinning of current sheets by these general incompatibilities inevitably results field notwithstanding the small resistivity. Strong Faraday in sheet dissipation, resistive heating and topological changes in the induction drives but also macroscopically limits this mode of energy dissipation, trapping or storing free energy in self-organized ideal-MHD structures. This property of MHD turbulence captured by the Taylor hypothesis is reviewed in relation to the Sun's corona, calling for a basic quantitative description of the breakdown of flux conservation in the low-resistivity limit. A cylindrical initial-boundary value problem provides specificity in the general MHD ideas presented.展开更多
基金Supported by the Aviation Science Foundation of China (2007ZA56001)the National Natural Science Foundation of China(50865009)~~
文摘To calculate the aerodynamics of flapping-wing micro air vehicle(MAV) with the high efficiency and the engineering-oriented accuracy,an improved unsteady vortex lattice method (UVLM) for MAV is proposed. The method considers the influence of instantaneous wing deforming in flapping,as well as the induced drag,additionally models the stretching and the dissipation of vortex rings,and can present the aerodynamics status on the wing surface. An implementation of the method is developed. Moreover,the results and the efficiency of the proposed method are verified by CFD methods. Considering the less time cost of UVLM,for application of UVLM in the MAV optimization,the influence of wake vortex ignoring time saving and precision is studied. Results show that saving in CPU time with wake vortex ignoring the appropriate distance is considerable while the precision is not significantly reduced. It indicates the potential value of UVLM in the optimization of MAV design.
文摘The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060056036)
文摘The lattice Boltzmann method (LBM) is employed to simulate the uniform flow past a circular cylinder. The performance of the two-dimensional LBM model on the prediction of force coefficients and vortex shedding frequency is investigated. The local grid refinement technique and second-order boundary condition for curved walls are applied in the calculations. It is found that the calculated vortex shedding frequency, drag coefficient and lift coefficient are consistent with experimental results at Reynolds nu...
基金Acknowledgements This work is supported by the National Natural Science Foundation of China (51490675, 51379125, 11432009, 51579145), Chang Jiang Scholars Program (T2014099), Shanghai Excellent Academic Leaders Program (17XD1402300), Shanghai Key Laboratory of Marine Engineering (K2015-11), Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (2013022), Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09) and Lloyd's Register Foundation for doctoral student, to which the authors are most grateful.
文摘This paper presents 3D (three-dimensional) CFD (computational fluid dynamic) simulation to analyse the FIR (flow-induced response) especially the yaw motion of a buoyancy can. The numerical cases are conducted with a buoyancy can under different reduced velocities utilizing our in-house code naoe-FOAM-SJTU, a solver based on the open source toolkit OpenFOAM. SST-DDES (shear-stress transport-delayed detached-eddy simulation) model is applied to handle the flowseparation and overset grid method is utilized to solve a large amplitude 6-DOF (6 degrees of freedom) motions. Free decay test and VIM (vortex-induced motion) test are built numerically. In VIM cases, the responses of trajectory, amplitude, frequency are calculated in a series of reduced velocities. With the increase of reduced velocity, yaw frequency is increased, which is similar to surge and sway frequency. And yaw frequency is equal to the sway frequency, which is consistent with experimental results. Furthermore, comparing two cases, one fixed in rotation and the other one free in rotation, it can be concluded that release in the degree of rotation can decrease the sway amplitude but make no difference in the surge amplitude.
文摘Using a model of long-range interactions between vortices, we investigate numerically the alternating current (ac) response of two-dimensional vortex lattice with randomly distributed point-like pinning centers. Mode-locking steps are observed in the simulated current-voltages characteristics, and the number of steps increases with the superimposed ac amplitude and frequency. Our results are in good agreement with recent experiments.
文摘A repulsive vortex\|vortex interaction model was used to numerically study the melting transition of the two\|dimensional vortex system with Monte Carlo method. Then a δ\|function\|like peak in the specific heat was observed and the internal energy showed a sharp drop at the melting temperature, which indicated that there exists a first\|order melting transition at finite temperatures. The Lindemann criterion was also investigated and valid, but different from previous simulation results.
文摘It is difficult for renewable energy resources to provide constant power with excellent quality for the grid system. This serial research proposes a power stabilization system with a pumped storage to guarantee power quality and capacity, while the outputs from the energy resources are at unstable and/or fluctuating conditions. The power stabilization system with a counter-rotating type pump-turbine unit was prepared and operated at the pumping and the turbine modes. The unit composed of the tandem impellers/runners connected to the inner and the outer armatures of the unique motor/generator. The experiments have verified that this type pump-turbine unit is reasonably effective to stabilize momentarily/instantaneously the fluctuating power from the renewable energy resources.
文摘This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind turbine, a three stage planetary gear box and an induction generator. The masses-springs approach of shaft system differential equations is developed from Newton's law and Lagrange formulas. For an easy comprehension for electrical engineers and tutorial purpose, an electrical equivalent circuit of the system is proposed by using mechanical and electrical components similarities. Extensive numerical simulations are performed to investigate system mechanical resonances and impacts of damping factors on the system dynamic and stability.
文摘提出一种基于升力线理论的对转开式转子(contra-rotating open rotor,CROR)气动设计方法。以推力为设计目标,基于拉格朗日乘子法构建气动设计控制方程组。考虑高飞行马赫数对流动特征的影响,根据激盘模型,采用一道正激波模拟转子的增压过程。完成速度场预测后,利用压气机三维造型方法完成初始设计。初始设计完成后,对翼型折转角进行修正从而满足目标推力。研究表明,整个设计过程中只需2次计算流体力学(CFD)计算与再设计便可满足目标推力,所需翼型折转角修正量为−0.486°,设计结果的推力与目标推力的相对误差为−0.32%,设计方法高效且具有高的设计精度。
基金supported by the Excellent Young Scientists Fund(Grant No.51222904)the national natural science foundation of China(Grant No.11302056)
文摘Simulations of bubble entrainment into a stationary Gaussian vortex are performed by using the combined particle tracking method(PTM)and boundary element method(BEM).Before the bubble is captured by the vortex core,oscillation and migration of the quasi-spherical nucleus are solved by using improved RP equation and the momentum theorem in the Lagrangian reference frame simultaneously,and the trajectory of the nucleus presents a kind of reduced helix shape.After captured by the vortex core,the bubble grows immediately and moves and deforms along the vortex core axis.The non-spherical evolution and deformation of the bubble is simulated by adopting a mixed Eulerian-Lagrangian method.The output of quasi-spherical stage is taken as the input of non-spherical stage,and all the behaviors of the entrained bubble can be simulated such as inception,motion,deformation and split.Numerical results agree well with published experimental data.On this basis,the influences of various factors such as viscosity,surface tension,buoyancy are studied systemically.Hopefully the results from this paper would provide some insight into the control on vortex bubble entrainment.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50906098 and 91016028)
文摘A hybrid LES (Large Eddy Simulation)/assumed sub-grid PDF (Probability Density Function) closure model has been devel-oped for supersonic turbulent combustion. Scalar transport equations for all species in a given chemical kinetic mechanism were solved, which are necessary in the supersonic combustion where the non-equilibrium chemistry is essentially involved. The clipped Gaussian PDF of temperature and multivariate ? PDF of composition were used to close the sub-grid chemical sources that appear in the conservation equations. The sub-grid variances of temperature and composition were constructed based on scale similarity approach. A semi-implicit approach based on the PDF model was proposed to tackle the resulting numerical stiffness associated with finite rate chemistry. The model was applied to simulate a supersonic, coaxial H2-air burner, where both the mean and rms (root mean square) results were compared with the experimental data. In general, good agree-ments were achieved, which indicated that the present sub-grid PDF method could work well in simulating supersonic turbu-lent combustion. Moreover, the calculation showed that the sub-grid fluctuations of temperature and major species in the combustion region were of the order of 10%-20% of their rms, while the sub-grid fluctuation of hydroxyl might be as high as 40%-50% of its rms.
基金supported by the High-Speed Railway Basic Research Fund Key Project of China(Grant No.U1234208)the National Key Research and Development Program of China(Grant No.2016YFB1200403)+1 种基金the National Natural Science Foundation of China(Grant Nos.51475394&51605397)the Research Project of State Key Laboratory of Traction Power(Grant No.2016TPL_T02)
文摘As one of the main aerodynamic noise sources of high-speed trains, the pantograph is a complex structure containing many components, and the flow around it is extremely dynamic, with high-level turbulence. This study analyzed the near-field unsteady flow around a pantograph using a large-eddy simulation(LES) with high-order finite difference schemes. The far-field aerodynamic noise from a pantograph was predicted using a computational fluid dynamics(CFD)/Ffowcs Williams-Hawkings(FW-H) acoustic analogy. The surface oscillating pressure data were also used in a boundary element method(BEM) acoustic analysis to predict the aerodynamic noise sources of a pantograph and the far-field sound radiation. The results indicated that the main aerodynamic noise sources of the pantograph were the panhead, base frame and knuckle. The panhead had the largest contribution to the far-field aerodynamic noise of the pantograph. The vortex shedding from the panhead generated tonal noise with the dominant peak corresponding to the vortex shedding frequency and the oscillating lift force exerted back on the fluid around the panhead.Additionally, the peak at the second harmonic frequency was associated with the oscillating drag force. The contribution of the knuckle-downstream direction to the pantograph aerodynamic noise was less than that of the knuckle-upstream direction of the pantograph, and the average sound pressure level(SPL) was 3.4 dBA. The directivity of the noise radiated exhibited a typical dipole pattern in which the noise directivity was obvious at the horizontal plane of θ=0°,the longitudinal plane of θ=120°,and the vertical plane of θ=90°.
基金co-sponsored by Japan Society for the Promotion of Science KAKENHI23860035
文摘This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit,to provide the constant output for the grid system,even at the suddenly fluctuating/turbulent wind.In this paper,the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode,and the performances and the flow conditions were investigated numerically and experimentally.The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model.While providing the pump unit for the turbine mode,the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclu-sively for the turbine mode.Besides,the runner/impeller of the unit works evidently so as to coincide the angularmomentum change through the front runners/impellers with that through the rear runners/impellers,namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.
基金The National Center for Atmospheric Researchis sponsored by the US National Science Foundation
文摘Magnetic field topology frozen in ideal magnetohydrodynamics (MHD) and its breakage in near-ideal MHD are reviewed in two parts, clarifying and expanding basic concepts. The first part gives a physically complete description of the frozen field topology derived from magnetic flux conservation as the fundamental property, treating four conceptually related topics: Eulerian and La- grangian descriptions of three dimensional (3D) MHD, Chandrasekhar-Kendall and Euler-potential field representations, magnetic helicity, and inviscid vortex dynamics as a fluid system in physical contrast to ideal MHD. A corollary of these developments clar- ifies the challenge of achieving a high degree of the frozen-in condition in numerical MHD. The second part treats field-topology breakage centered around the Parker Magnetostatic Theorem on a general incompatibility of a continuous magnetic field with the dual demand of force-free equilibrium and an arbitrarily prescribed, 3D field topology. Preserving field topology as a global con- straint readily results in formation of tangential magnetic discontinuities, or, equivalently, electric current-sheets of zero thickness. A similar incompatibility is present in the steady force-thermal balance of a heated radiating fluid subject to an anisotropic thermal flux conducted strictly along its frozen-in magnetic field in the low-fl limit. In a weakly resistive fluid the thinning of current sheets by these general incompatibilities inevitably results field notwithstanding the small resistivity. Strong Faraday in sheet dissipation, resistive heating and topological changes in the induction drives but also macroscopically limits this mode of energy dissipation, trapping or storing free energy in self-organized ideal-MHD structures. This property of MHD turbulence captured by the Taylor hypothesis is reviewed in relation to the Sun's corona, calling for a basic quantitative description of the breakdown of flux conservation in the low-resistivity limit. A cylindrical initial-boundary value problem provides specificity in the general MHD ideas presented.