This study focuses on the spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea(SCS). An automatic eddy detection method,based on the geometry of velocity vectors,was adopted to ...This study focuses on the spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea(SCS). An automatic eddy detection method,based on the geometry of velocity vectors,was adopted to obtain an eddy dataset from 21 years of satellite altimeter data. Analysis revealed that the number of anticyclonic eddies was nearly equal to cyclonic eddies; in the SCS,cyclonic eddies are generally stronger than anticyclonic eddies and anticyclonic eddies are larger and longer-lived than cyclonic eddies. Anticyclonic eddies tend to survive longer in the spring and summer,while cyclonic eddies have longer lifetimes in the autumn and winter. The characteristics and seasonal variations of eddies in the SCS are strongly related to variations in general ocean circulation,in the homogeneity of surface wind stress,and in the unevenness of bottom topography in the SCS. The spatial and temporal variation of mesoscale eddies in the SCS could,therefore,be an important index for understanding local hydrodynamics and regional climate change.展开更多
An experimental investigation was made into three-dimensional separated flow and the vortices within the flow separation in a decelerating channel flow generated by the suction from a porous side wall. The flows along...An experimental investigation was made into three-dimensional separated flow and the vortices within the flow separation in a decelerating channel flow generated by the suction from a porous side wall. The flows along the side and bottom walls were visualized by the surface tuft method. The turbulent internal flow was measured by the split-film probe to investigate the turbulent flow including the reverse flow. In the flow visualization for the strong decelerating flow (the suction flow ratio:0.8), two typical flow patterns appear alternatively. One is that the flow near the bottom wall separates more upstream than the flow near the top wall and a clockwise vortex can be seen in the separation region. Another is the reversal flow pattern with a counterclockwise vortex. By the turbulent flow measurement using the split-film probe, two peaks of turbulence level are observed for the strong decelerating flow case. These peaks can be related with two flow patterns mentioned above.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation of China(No.U1133001)the NSFC-Shandong Joint Fund for Marine Science Research Centers Grant(No.U1406401)
文摘This study focuses on the spatial and temporal distribution characteristics of mesoscale eddies in the South China Sea(SCS). An automatic eddy detection method,based on the geometry of velocity vectors,was adopted to obtain an eddy dataset from 21 years of satellite altimeter data. Analysis revealed that the number of anticyclonic eddies was nearly equal to cyclonic eddies; in the SCS,cyclonic eddies are generally stronger than anticyclonic eddies and anticyclonic eddies are larger and longer-lived than cyclonic eddies. Anticyclonic eddies tend to survive longer in the spring and summer,while cyclonic eddies have longer lifetimes in the autumn and winter. The characteristics and seasonal variations of eddies in the SCS are strongly related to variations in general ocean circulation,in the homogeneity of surface wind stress,and in the unevenness of bottom topography in the SCS. The spatial and temporal variation of mesoscale eddies in the SCS could,therefore,be an important index for understanding local hydrodynamics and regional climate change.
文摘An experimental investigation was made into three-dimensional separated flow and the vortices within the flow separation in a decelerating channel flow generated by the suction from a porous side wall. The flows along the side and bottom walls were visualized by the surface tuft method. The turbulent internal flow was measured by the split-film probe to investigate the turbulent flow including the reverse flow. In the flow visualization for the strong decelerating flow (the suction flow ratio:0.8), two typical flow patterns appear alternatively. One is that the flow near the bottom wall separates more upstream than the flow near the top wall and a clockwise vortex can be seen in the separation region. Another is the reversal flow pattern with a counterclockwise vortex. By the turbulent flow measurement using the split-film probe, two peaks of turbulence level are observed for the strong decelerating flow case. These peaks can be related with two flow patterns mentioned above.