Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. Th...Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. The method studies the sys tem characteristics near the equilibrium manifold. The modeling method can be realized through dynamic and static twostep, and for the specific parameter modeling steps and algorithm are given. The output of the test data is compared with the model output through numerical simulation, to check the model with an additional set of test data. The simulation results show that the model has reached the requirements of engineering accuracy.展开更多
This paper describes a particular stack performance realized in a building (school) at real scale by computation of the wind induced ventilation and a comparison of the stack performance (airflow rate extracted and...This paper describes a particular stack performance realized in a building (school) at real scale by computation of the wind induced ventilation and a comparison of the stack performance (airflow rate extracted and wind speed) respect to other systems (wind catcher, wind jetter and wind turbine) are also showed. The realization of the system, actually working, shows the synergy between a plant design and installation using traditional energy sources with innovative engineering techniques providing for the use of integrative energy. In this case, the wind action plays an important role for the conditioning of the school, integrating and giving a significant energetic contribution to the air cooling system. The school building (a nursery) has been built in Modena and is actually working.展开更多
Numerical methods such as finite difference, finite volume, finite element or hybrid methods have been globally used to successfully study fluid flow in porous stratum of which aquifers are typical examples. Those met...Numerical methods such as finite difference, finite volume, finite element or hybrid methods have been globally used to successfully study fluid flow in porous stratum of which aquifers are typical examples. Those methods involve mathematical expressions which increases computation time with requirement of specific human expertise. In this paper, numerical models for single phase flow in 1D and 2D using the conservation of mass principles, Darcy's flow equation, equation of state, continuity equation and the STB/CFB (stock tank barrel/cubic feet barrel) balance were developed. The models were then recast into pressure vorticity equations using convectional algorithms. Derived equations were used to formulate transport equations which resemble the conventional vorticity transport equation. Formulated numerical models were used to investigate the daily instantaneous aquifer pressure drawdowns and pressure heads for 365 days. The developed equations were subsequently solved using cellular vortex element technique. The developed computer program was used to investigate confined aquifer of dimensions 10× 10 × 75 m with single vertex image. For the aquifer rate of 0.5 m3/s, 0.1 m3/s, 0.15 m3/s, 0.2 m3/s, 0.25 m3/s, 1.0 m3/s, 2.0 m3/s, 2.5 m3/s, 3.0 m3/s, 4.0 m3/s, the respective average head drawdowns and heads were, 1.127 ±0.0141 m, 1.317 ±0.0104 m, 1.412± 0.0041 m, 1.427 ± 0.116 m,1.527 ± 0.0141 m, 2.107 ± 0.0171 m, 2.197 ±0.0191 m, 3.007±0.0171 m, 3.127 ± 0.0041 m, 3.626 ± 0.0121 m, and 25 kN/m2, 35 kN/m2, 33 kN/m2, 5 kN/m2, 6 kN/m2, 11 kN/m2, 25 kN/m2, 42 kN/m2, 50 kN/m2, 62 kN/m2, respectively. Cellular vortex technique with relative little mathematics has been established to have recorded successes in numerical modeling of fluid flow in aquifer simulation.展开更多
文摘Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. The method studies the sys tem characteristics near the equilibrium manifold. The modeling method can be realized through dynamic and static twostep, and for the specific parameter modeling steps and algorithm are given. The output of the test data is compared with the model output through numerical simulation, to check the model with an additional set of test data. The simulation results show that the model has reached the requirements of engineering accuracy.
文摘This paper describes a particular stack performance realized in a building (school) at real scale by computation of the wind induced ventilation and a comparison of the stack performance (airflow rate extracted and wind speed) respect to other systems (wind catcher, wind jetter and wind turbine) are also showed. The realization of the system, actually working, shows the synergy between a plant design and installation using traditional energy sources with innovative engineering techniques providing for the use of integrative energy. In this case, the wind action plays an important role for the conditioning of the school, integrating and giving a significant energetic contribution to the air cooling system. The school building (a nursery) has been built in Modena and is actually working.
文摘Numerical methods such as finite difference, finite volume, finite element or hybrid methods have been globally used to successfully study fluid flow in porous stratum of which aquifers are typical examples. Those methods involve mathematical expressions which increases computation time with requirement of specific human expertise. In this paper, numerical models for single phase flow in 1D and 2D using the conservation of mass principles, Darcy's flow equation, equation of state, continuity equation and the STB/CFB (stock tank barrel/cubic feet barrel) balance were developed. The models were then recast into pressure vorticity equations using convectional algorithms. Derived equations were used to formulate transport equations which resemble the conventional vorticity transport equation. Formulated numerical models were used to investigate the daily instantaneous aquifer pressure drawdowns and pressure heads for 365 days. The developed equations were subsequently solved using cellular vortex element technique. The developed computer program was used to investigate confined aquifer of dimensions 10× 10 × 75 m with single vertex image. For the aquifer rate of 0.5 m3/s, 0.1 m3/s, 0.15 m3/s, 0.2 m3/s, 0.25 m3/s, 1.0 m3/s, 2.0 m3/s, 2.5 m3/s, 3.0 m3/s, 4.0 m3/s, the respective average head drawdowns and heads were, 1.127 ±0.0141 m, 1.317 ±0.0104 m, 1.412± 0.0041 m, 1.427 ± 0.116 m,1.527 ± 0.0141 m, 2.107 ± 0.0171 m, 2.197 ±0.0191 m, 3.007±0.0171 m, 3.127 ± 0.0041 m, 3.626 ± 0.0121 m, and 25 kN/m2, 35 kN/m2, 33 kN/m2, 5 kN/m2, 6 kN/m2, 11 kN/m2, 25 kN/m2, 42 kN/m2, 50 kN/m2, 62 kN/m2, respectively. Cellular vortex technique with relative little mathematics has been established to have recorded successes in numerical modeling of fluid flow in aquifer simulation.