期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于DoE分析的增压器涡轮叶形优化设计方法 被引量:8
1
作者 倪计民 刘越 +3 位作者 石秀勇 高旭南 李佳琪 魏亚男 《农业机械学报》 EI CAS CSCD 北大核心 2016年第7期361-367,共7页
以提高增压器涡轮等熵效率为目标,提出使用基于试验设计(Design of experiment,DoE)的优化设计方法,进行涡轮叶片优化设计研究。对现有增压器涡轮选取合理的特征型线方案,建立了涡轮参数化模型;在现有增压器的基础上建立了计算流体力学(... 以提高增压器涡轮等熵效率为目标,提出使用基于试验设计(Design of experiment,DoE)的优化设计方法,进行涡轮叶片优化设计研究。对现有增压器涡轮选取合理的特征型线方案,建立了涡轮参数化模型;在现有增压器的基础上建立了计算流体力学(Computational fluid dynamics,CFD)仿真模型,并通过涡轮热吹试验台架验证了模型的可靠性;选取14个描述叶形的叶片截面控制参数作为设计变量,运用正交矩阵法对设计空间进行析因分析和仿真计算,根据计算结果选取了5个敏感度较高的控制参数,使用最优拉丁超立方方法建立了响应面近似模型;采用基于多岛遗传算法和序列二次规划算法的组合优化方法进行寻优计算。结果表明:优化后的涡轮流道中的涡旋强度降低,流场分布更加均匀,流动损失有所降低,等熵效率为74.04%,较原始涡轮提升2.16个百分点。 展开更多
关键词 发动机 增压器 涡轮叶形 试验设计 计算流体力学
下载PDF
Parametric geometry representations for wind turbine blade shapes 被引量:3
2
作者 Chen Jin Zhang Shiqiang +1 位作者 Hou Yi Eecen Peter 《High Technology Letters》 EI CAS 2011年第3期325-332,共8页
Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have ... Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have been studied. Results of the analysis of a typical wind turbine airfoil are shown to illustrate the evaluation process and to demonstrate the rate of convergence of the geometric characteristics. The coordinates and aerodynamic performance of approximate airfoils is rapidly close to the baseline airfoil corresponding to increasing orders of polynomial. Comparison of the RFOIL prediction and experimental results for the baseline airfoil generally show good agreement. A universal method for three-dimensional blade integration-" Shape function/Distribution function" is presented. By changing the parameters of shape function and distribution functions, a three dimensional blade can be designed and then transformed into the physical space in which the actual geometry is defined. Application of this method to a wind turbine blade is presented and the differences of power performance between the represented blade and original one are less than 0. 5%. This method is particularly simple and convenient for bodies of streamline forms. 展开更多
关键词 wind turbine AIRFOILS aerodynamic convergence shape function/ distribution function orders of polynomial (OP)
下载PDF
Effects of the Blade Shape on the Trailing Vortices in Liquid Flow Generated by Disc Turbines 被引量:9
3
作者 赵静 高正明 包雨云 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期232-242,共11页
Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines... Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines,in-cluding Rushton turbine,concaved blade disk turbine,half elliptical blade disk turbine,and parabolic blade disk turbine.Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail.The location,size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the trailing vortex characteristics.The larger curvature resulted in longer residence time of the vortex at the impeller tip,bigger distance between the upper and lower vortices and longer vortex life,also leads to smaller and stronger vortices.In addition,the turbulent ki-netic energy and turbulent energy dissipation in the discharge flow were determined and discussed.High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them.Although restricted to single phase flow,the presented results are essential for reliable de-sign and scale-up of stirred tank with disc turbines. 展开更多
关键词 trailing vortices disc turbine particle image velocimetry blade shape
下载PDF
EFFECTS OF END-WALL SHAPING ON STEAM TURBINE EFFICIENCY
4
作者 Hoznedl Michal Tajc Ladislav +1 位作者 Bednar Lukas Dvorak Dalibor 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期23-31,共9页
The end-wall shaping effects of the guide blade in the steam turbine stages are studied.The research of the end-wall shaping effects on turbine efficiency applies CFD numerical simulations and the measurement of strai... The end-wall shaping effects of the guide blade in the steam turbine stages are studied.The research of the end-wall shaping effects on turbine efficiency applies CFD numerical simulations and the measurement of straight blade cascades in the wind tunnel.The final stage of research activities includes the experimental verification of the findings in an experimental steam turbine.As the findings are interesting in terms of efficiency,a series of 3-D numerical simulations are executed.These demonstrate the certain improvement when the shaping is used,especially in the blade tip area.The steam turbine is used to measure the shaping effects on both sides(bilateral shaping)as well as only in the blade tip area.The process indicates the efficiency improvement on the blade tip shaping.However,this occurs only in partial admission.On the other hand,there is a drop in efficiency compared with blades with straight end-walls. 展开更多
关键词 turbines turbine blade EFFICIENCY end-wall shaping
下载PDF
Blade Shape Optimization of Liquid Turbine Flow Sensor 被引量:2
5
作者 郭素娜 张涛 +2 位作者 孙立军 杨振 杨文量 《Transactions of Tianjin University》 EI CAS 2016年第2期144-150,共7页
Based on the characteristic curve analysis, the method using D(K^2) square difference of meter factor at different flow rates was developed to evaluate the performance of turbine flow sensor in this study. Then accord... Based on the characteristic curve analysis, the method using D(K^2) square difference of meter factor at different flow rates was developed to evaluate the performance of turbine flow sensor in this study. Then according to the distribution of entrance velocity, it was supposed that reducing the blade area near the tip could decrease the linearity error of a sensor. Therefore, the influence of different blade shape parameters on the performance of the sensor was investigated by combining computational fluid dynamics(CFD)simulation with experimental test. The experimental results showed that, for the liquid turbine flow sensor with a diameter of 10 mm, the linearity error was smallest, and the performance of sensor was optimal when blade shape parameter equaled 0.25. 展开更多
关键词 turbine flow sensor performance evaluation method parameter optimization mathematical model CFD simulation
下载PDF
Flowfield and Heat Transfer past an Unshrouded Gas Turbine Blade Tip with Different Shapes 被引量:2
6
作者 Jian-Jun LIU Peng LI +1 位作者 Chao ZHANG Bai-Tao AN 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第2期128-134,共7页
This paper describes the numerical investigations of flow and heat transfer in an unshrouded turbine rotor blade of a heavy duty gas turbine with four tip configurations. By comparing the calculated contours of heat t... This paper describes the numerical investigations of flow and heat transfer in an unshrouded turbine rotor blade of a heavy duty gas turbine with four tip configurations. By comparing the calculated contours of heat transfer coefficients on the flat tip of the HP turbine rotor blade in the GE-E3 aircraft engine with the corresponding ex- perimental data, the K:-o~ turbulence model was chosen for the present numerical simulations. The inlet and outlet boundary conditions for the turbine rotor blade are specified as the real gas turbine, which were obtained from the 3D full stage simulations. The rotor blade and the hub endwall are rotary and the casing is stationary. The influ- ences of tip configurations on the tip leakage flow and blade tip heat transfer were discussed. It's showed that the different tip configurations changed the leakage flow patterns and the pressure distributions on the suction surface near the blade tip. Compared with the flat tip, the total pressure loss caused by the leakage flow was decreased for the full squealer tip and pressure side squealer tip, while increased for the suction side squealer tip. The suction side squealer tip results in the lowest averaged heat transfer coefficient on the blade tip compared to the other tip configurations. 展开更多
关键词 Turbine Rotor Blade Squealer Blade Tip Tip Leakage Flow Aerodynamic Loss Heat Transfer
原文传递
Flow reconstructions and aerodynamic shape optimization of turbomachinery blades by POD-based hybrid models 被引量:2
7
作者 LUO JiaQi ZHU YaLu +1 位作者 TANG Xiao LIU Feng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第11期1658-1673,共16页
This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a... This study presented a hybrid model method based on proper orthogonal decomposition(POD) for flow field reconstructions and aerodynamic design optimization. The POD basis modes have better description performance in a system space compared to the widely used semi-empirical basis functions because they are obtained through singular value decomposition of the system.Instead of the widely used linear regression, nonlinear regression methods are used in the function response of the coefficients of POD basis modes. Moreover, an adaptive Latin hypercube design method with improved space filling and correlation based on a multi-objective optimization approach was employed to supply the necessary samples. Prior to design optimization, the response performance of POD-based hybrid models was first investigated and validated through flow reconstructions of both single-and multiple blade rows. Then, an inverse design was performed to approach a given spanwise flow turning distribution at the outlet of a turbine blade by changing the spanwise stagger angle, based on the hybrid model method. Finally, the span wise blade sweep of a transonic compressor rotor and the spanwise stagger angle of the stator blade of a single low-speed compressor stage were modified to reduce the flow losses with the constraints of mass flow rate, total pressure ratio, and outlet flow turning.The results are presented in detail, demonstrating the good response performance of POD-based hybrid models on missing data reconstructions and the effectiveness of POD-based hybrid model method in aerodynamic design optimization. 展开更多
关键词 flow reconstruction aerodynamic design optimization proper orthogonal decomposition TURBOMACHINERY hybrid model computational fluid dynamics TRANSONIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部