The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on ext...To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.展开更多
In order to obtain the performance of the offshore wind turbine tripod foundation, a tripod foundation model was built by ANSYS. The static analysis, modal analysis and the transient dynamic analysis were run. Differe...In order to obtain the performance of the offshore wind turbine tripod foundation, a tripod foundation model was built by ANSYS. The static analysis, modal analysis and the transient dynamic analysis were run. Different parameters such as displacement, velocity, acceleration, stress were obtained and by analyzing these data, it is reasonable to draw a conclusion that the tripod foundation has a good performance used on the offshore wind turbine.展开更多
Innovative features of wind turbine blades with flatback at inboard region,thick airfoils at inboard as well as mid-span region and transversely stepped thickness in spar caps have been proposed by Institute of Engine...Innovative features of wind turbine blades with flatback at inboard region,thick airfoils at inboard as well as mid-span region and transversely stepped thickness in spar caps have been proposed by Institute of Engineering Thermophysics,Chinese Academy of Sciences(IET-Wind)in order to improve both aerodynamic and structural efficiency of rotor blades.To verify the proposed design concepts,this study first presented numerical analysis using finite element method to clarify the effect of flatback on local buckling strength of the inboard region.Blade models with various loading cases,inboard configurations,and core materials were comparatively studied.Furthermore,a prototype blade incorporated with innovative features was manufactured and tested under static bending loads to investigate its structural response and characteristics.It was found that rotor blades with flatback exhibited favorable local buckling strength at the inboard region compared with those with conventional sharp trailing edge when low-density PVC foam was used.The prototype blade showed linear behavior under extreme loads in spar caps,aft panels,shear web and flatback near the maximum chord which is usually susceptible to buckling in the blades according to traditional designs.The inboard region of the blade showed exceptional load-carrying capacity as it survived420%extreme loads in the experiment.Through this study,potential structural advantages by applying proposed structural features to large composite blades of multi-megawatt wind turbines were addressed.展开更多
The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (...The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (VATT) rotor, subjected to spatially varying inflow. Moreover, this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations. The blade's deformation for each new time step is considered in transient two-way FSI analysis, to make the design more reliable. Usually this is not considered in routine one-way FSI simulations. A rotor with four blades and 4-m diameter was modeled and numerically analyzed. We observed that two-way FSI, utilizing the strongly coupled method, was impossible for a complex model; and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench, as given in ANSYS-WORKBENCH, helped case examples 22 and 23, by giving an error when the solution was run. To make the method possible and reduce the computational power, a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results. Consequently, the results indicating a two-way transient FSI analysis is a time- and resource-consuming job, but with our proposed technique we can reduce the computational time. The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI. Similarly, fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results. Additionally, this study shows that, using the proposed method we can perform coupled simulation with simple multi-node PCs (core i5).展开更多
Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in hi...Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue(HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction(FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics(CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element(FE) model to conduct the computational structural dynamics(CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation(SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.展开更多
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.
基金Project(51175017)supported by the National Natural Science Foundation of ChinaProject(YWF-12-RBYJ-008)supported by the Innovation Foundation of Beihang University for PhD Graduates,ChinaProject(20111102110011)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.
文摘In order to obtain the performance of the offshore wind turbine tripod foundation, a tripod foundation model was built by ANSYS. The static analysis, modal analysis and the transient dynamic analysis were run. Different parameters such as displacement, velocity, acceleration, stress were obtained and by analyzing these data, it is reasonable to draw a conclusion that the tripod foundation has a good performance used on the offshore wind turbine.
基金supported by the National Natural Science Foundation of China(Grant No.51405468)
文摘Innovative features of wind turbine blades with flatback at inboard region,thick airfoils at inboard as well as mid-span region and transversely stepped thickness in spar caps have been proposed by Institute of Engineering Thermophysics,Chinese Academy of Sciences(IET-Wind)in order to improve both aerodynamic and structural efficiency of rotor blades.To verify the proposed design concepts,this study first presented numerical analysis using finite element method to clarify the effect of flatback on local buckling strength of the inboard region.Blade models with various loading cases,inboard configurations,and core materials were comparatively studied.Furthermore,a prototype blade incorporated with innovative features was manufactured and tested under static bending loads to investigate its structural response and characteristics.It was found that rotor blades with flatback exhibited favorable local buckling strength at the inboard region compared with those with conventional sharp trailing edge when low-density PVC foam was used.The prototype blade showed linear behavior under extreme loads in spar caps,aft panels,shear web and flatback near the maximum chord which is usually susceptible to buckling in the blades according to traditional designs.The inboard region of the blade showed exceptional load-carrying capacity as it survived420%extreme loads in the experiment.Through this study,potential structural advantages by applying proposed structural features to large composite blades of multi-megawatt wind turbines were addressed.
基金supported by the National Natural Science Foundation of China (Nos. 51209060 and 51106034)the ‘111’ Project Foundation from Ministry of Education and State Administration of Foreign Experts Affairs (No. B07019), Chinathe National Special Foundation for Ocean Energy (No. GHME2010CY01)
文摘The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (VATT) rotor, subjected to spatially varying inflow. Moreover, this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations. The blade's deformation for each new time step is considered in transient two-way FSI analysis, to make the design more reliable. Usually this is not considered in routine one-way FSI simulations. A rotor with four blades and 4-m diameter was modeled and numerically analyzed. We observed that two-way FSI, utilizing the strongly coupled method, was impossible for a complex model; and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench, as given in ANSYS-WORKBENCH, helped case examples 22 and 23, by giving an error when the solution was run. To make the method possible and reduce the computational power, a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results. Consequently, the results indicating a two-way transient FSI analysis is a time- and resource-consuming job, but with our proposed technique we can reduce the computational time. The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI. Similarly, fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results. Additionally, this study shows that, using the proposed method we can perform coupled simulation with simple multi-node PCs (core i5).
基金supported by the National Natural Science Foundation of China(Grant No.51276018)
文摘Rotor blades in a radial turbine with nozzle guide vanes typically experience harmonic aerodynamic excitations due to the rotor stator interaction. Dynamic stresses induced by the harmonic excitations can result in high cycle fatigue(HCF) of the blades. A reliable prediction method for forced response issue is essential to avoid the HCF problem. In this work, the forced response mechanisms were investigated based on a fluid structure interaction(FSI) method. Aerodynamic excitations were obtained by three-dimensional unsteady computational fluid dynamics(CFD) simulation with phase shifted periodic boundary conditions. The first two harmonic pressures were determined as the primary components of the excitation and applied to finite element(FE) model to conduct the computational structural dynamics(CSD) simulation. The computed results from the harmonic forced response analysis show good agreement with the predictions of Singh's advanced frequency evaluation(SAFE) diagram. Moreover, the mode superposition method used in FE simulation offers an efficient way to provide quantitative assessments of mode response levels and resonant strength.