The paper presents the measurement campaign of wind energy potential undertaken in Republic of Macedonia on four sites from the middle of 2006. The wind data analysis has been performed for one site, following with th...The paper presents the measurement campaign of wind energy potential undertaken in Republic of Macedonia on four sites from the middle of 2006. The wind data analysis has been performed for one site, following with the assessment of energy production of simulated wind park with six wind turbine generators.展开更多
This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusio...This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be made from the results of this research. 1) In the case of coexisting wave-wind fields, the wind effect stabilizes the pitch motion. 2) The wind effect decreases vibration of the mooring lines when waves and wind coexist. In particular, the springing (2nd or 3rd order force) also decreases in this field. 3) It can be estimated that the reduction in the rate of generation of electrical power can be up to about 6% as a result of the heel angle. In addition, the annual amount of electricity generated was estimated along with the utilization factor based on the experimental results.展开更多
Early and accurate fault detection and diagnosis for renewable energy systems can increase their safety and ensure the continuity of their service. This paper presents a comprehensive review of different fault detecti...Early and accurate fault detection and diagnosis for renewable energy systems can increase their safety and ensure the continuity of their service. This paper presents a comprehensive review of different fault detection and diagnosis methods for hybrid renewable energy systems consisting of a wind turbine power generator, a PV (photovoltaic) array, a PEM (polymer electrolyte membrane) fuel cell and a battery storage system. The need of batteries to store the generated power from the solar panel, wind turbine or PEM fuel cell is also emphasized. Finally, an overview of the current methods used in the diagnosing of the lead-acid battery degradation is given.展开更多
The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platfo...The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooting system dynamics of the platform were calculated by SESAM soRware. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.展开更多
Selection of the wind turbine manufacturer is naturally an important issue for wind energy companies when they build new wind farms. This paper describes the main factors by which wind energy companies choose their tu...Selection of the wind turbine manufacturer is naturally an important issue for wind energy companies when they build new wind farms. This paper describes the main factors by which wind energy companies choose their turbine manufacturers in a selected case region in Finland. The study was conducted using semi-structured interviews, for which the experts and decision makers of selected wind energy companies formed the focus group. During the analysis of the results, it became clear that it was not possible to form a detailed and prioritized list of selection criteria, but still some general themes emerged. The main theme was the manufacturer and product reliability, and then the production volume, cost factors, availability factors, and the organization of maintenance in this order. Interestingly, the arctic conditions of the selected case region did not play any significant role.展开更多
The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region...The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region, the PV curves at the point of common coupling (PCC), key buses and important substations are plotted; the variation of voltage as well as the limit and margin of static stability are analyzed. It is resulted from the simulation that the limit of static voltage at weak nodes is lower, and the static voltage of the power system with wind farms adopting doubly-fed induction generators (DFIG) is more stable than that with wind farms adopting common asynchronous generators.展开更多
Japan's first open sea offshore wind farm, Kamisu offshore windfarm Phase l, was stricken by an earthquake of intensity 6 on the Japanese seismic scale and a five-meter-high tsunami during the Great East Japan Earthq...Japan's first open sea offshore wind farm, Kamisu offshore windfarm Phase l, was stricken by an earthquake of intensity 6 on the Japanese seismic scale and a five-meter-high tsunami during the Great East Japan Earthquake on March 11,2011. The wind farm resumed operation on March 14 after checks revealed no damage to the system, even though the wind farm was temporarily forced to stop due to the grid failure caused by the earthquake. Wind turbines require a precise seismic design especially in an earthquake-prone country such as Japan. Wind power Kamisu Phase 2 was built one year after the earthquake based on the experience of Kamisu Phase 1. This paper presents the seismic design of offshore wind turbines and the situation during the earthquake and tsunami.展开更多
Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different a...Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase V1 wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.展开更多
This paper presents an analysis of a pre-feasibility study of a 10 MW offshore wind power project in Nakhon Si Thammarat province, southern Thailand. The wind speeds at the hub heights of large scale wind turbine gene...This paper presents an analysis of a pre-feasibility study of a 10 MW offshore wind power project in Nakhon Si Thammarat province, southern Thailand. The wind speeds at the hub heights of large scale wind turbine generators (WTG), i.e. 80-100 m, were extrapolated using monthly mean wind shear coefficients and the l/7th exponent. Using WAsP 9.0, the annual energy production from several models of offshore wind farms using different WTG was analyzed. The capacity factor and the cost of energy were then computed. Using best available estimates, the analysis shows that the estimated annual mean offshore wind speeds at 80-100 m were in the range of 6.4 and 8.3 m/s. The annual energy production by the wind farm from nine models of wind turbine generators were in the range of 20-39 GWh/year, corresponding to a capacity factor in the range of 26-46%, while the cost of energy was 12-15 US cent/kWh.展开更多
This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent mag...This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent magnet synchronous generator) is introduced as construction and model. Configurations of different power converters are presented for use with DDPMSG in wind systems at variable speed operation and maximum power capture. Control techniques for the system are discussed for both machine-side and grid-side in details. Grid integration is provided with focus on how to insure power quality of the system and the performance at disturbances.展开更多
This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind tur...This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind turbine, a three stage planetary gear box and an induction generator. The masses-springs approach of shaft system differential equations is developed from Newton's law and Lagrange formulas. For an easy comprehension for electrical engineers and tutorial purpose, an electrical equivalent circuit of the system is proposed by using mechanical and electrical components similarities. Extensive numerical simulations are performed to investigate system mechanical resonances and impacts of damping factors on the system dynamic and stability.展开更多
In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) ...In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.展开更多
The paper analyzes different turbine design suitable for the urban environment. The author discusses various options for setting up wind turbines in relation to the building. In order to gain insight into the real ind...The paper analyzes different turbine design suitable for the urban environment. The author discusses various options for setting up wind turbines in relation to the building. In order to gain insight into the real indicators, considered are actual examples of wind turbines mounted on buildings, sports facilities, roads, etc. However, these turbines have relatively low efficiency and a long payback period, and the problem may be the noise they produce. Therefore, the wind turbines installed in buildings are still more a matter of prestige of individual investors and architects than profitable investment.展开更多
Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention due to its low cost and great bearing capacity. In order to ensure the cover-bearing mode, the muddy soil inside th...Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention due to its low cost and great bearing capacity. In order to ensure the cover-bearing mode, the muddy soil inside the bucket foundation should be reinforced by some soil consolidation methods, such as negative pressure and electro-osmosis. Firstly, tests were conducted to obtain the reasonable current density. Meanwhile, to improve the electro-osmotic speed and effectiveness, other factors such as intermittent power and layout of electrode, were also studied in the tests. Then, the soil reinforcing tests by negative pressure combined with electro-osmosis were performed for the muddy soil consolidation inside the bucket foundation. The results showed that soil reinforcement by negative pressure was quicker and more obvious during the early phase, and electro-osmotic method can affect more range of soil by rational arrangement of electrodes. Compared with negative pressure, the electro-osmotic method was a continuous and relatively slow process of reinforcement, which was complementary to the negative pressure method. The voltage value of electro-osmosis had little effect on the muddy soil reinforcement inside the bucket foundation, and 1.5 A was chosen as the most reasonable current value for scale model testing in the electro-osmotic method.展开更多
In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In t...In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation.展开更多
Generally, lightning damage has mainly been to home appliances and telephones, towers and power transmission and generation equipment mal functions and damage due to strikes on power lines. With the adoption of wind p...Generally, lightning damage has mainly been to home appliances and telephones, towers and power transmission and generation equipment mal functions and damage due to strikes on power lines. With the adoption of wind power generation equipment, however, lightning damage is also increasing in this area. Through his dimensional characteristics, the wind power system is more exposed in the nature compared to all others systems. Lightning damage is the single largest cause of unplanned downtime in wind turbines, and that downtime is responsible for the loss of countless megawatts of power generation. The wind turbines are important structures, since they can easily attract the wrath of storms hits heights close, they can also capture the most distant. The rotation of the blades may also trigger lightning and result in considerable increase in the number of strikes to a wind turbine unit. Since wind turbines are tall structures, the lightning currents that are injected by return strokes into the turbines will be affected by reflections at the top, at the bottom, and at the junction of the blades with the static base of the turbine. We present our contribution in this paper to study lightning strokes and their effects on the wind turbines with the aim to enrich the work and to suggest more effective means of protection against lightning.展开更多
Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power ...Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power plant. Existing techniques of control of a vibrating condition do not consider: very wide frequency range of vibrating processes, difficult character of such processes in the form of the sum multiharmonic, random and close to shock processes. Such techniques usually do not consider intervals of start-up and stop, and also work on transitive modes when loadings on a construction are maximum. Available techniques of an estimation of admissible level of vibrating influence and tests for vibration durability are not harmonized enough among themselves. Various known interpretations of communication of vibrating characteristics and durability estimations on mechanical pressure at broadband vibrating influence yield ambiguous result. On the basis of the analysis of the published information, we attempt to formulate the requirement to system of vibrating monitoring of the hydraulic turbine and power motor pumps. System should provide data acquisition and the analysis of the data on a vibrating condition taking into account accumulation of vibrating influences and long term of operation on the basis of estimation methods as low-cycle, and high-cycle (gigacycle) fatigue is made.展开更多
文摘The paper presents the measurement campaign of wind energy potential undertaken in Republic of Macedonia on four sites from the middle of 2006. The wind data analysis has been performed for one site, following with the assessment of energy production of simulated wind park with six wind turbine generators.
基金Supported by The Japan Science Society(Foundation: Grant No.23-708K)
文摘This research proposes a new offshore wind energy generation system that uses a tension leg platform (TLP) and describes experiments performed on a TLP type wind turbine in both waves and wind. The following conclusions can be made from the results of this research. 1) In the case of coexisting wave-wind fields, the wind effect stabilizes the pitch motion. 2) The wind effect decreases vibration of the mooring lines when waves and wind coexist. In particular, the springing (2nd or 3rd order force) also decreases in this field. 3) It can be estimated that the reduction in the rate of generation of electrical power can be up to about 6% as a result of the heel angle. In addition, the annual amount of electricity generated was estimated along with the utilization factor based on the experimental results.
文摘Early and accurate fault detection and diagnosis for renewable energy systems can increase their safety and ensure the continuity of their service. This paper presents a comprehensive review of different fault detection and diagnosis methods for hybrid renewable energy systems consisting of a wind turbine power generator, a PV (photovoltaic) array, a PEM (polymer electrolyte membrane) fuel cell and a battery storage system. The need of batteries to store the generated power from the solar panel, wind turbine or PEM fuel cell is also emphasized. Finally, an overview of the current methods used in the diagnosing of the lead-acid battery degradation is given.
基金Foundation item: Supported by the 111 Project under Grant No.B07019, and the National Natural Science Foundation of China under Grant No.50979020.
文摘The development of offshore wind farms was originally carried out in shallow water areas with fixed (seabed mounted) structures. However, countries with limited shallow water areas require innovative floating platforms to deploy wind turbines offshore in order to harness wind energy to generate electricity in deep seas. The performances of motion and mooring system dynamics are vital to designing a cost effective and durable floating platform. This paper describes a numerical model to simulate dynamic behavior of a new semi-submersible type floating offshore wind turbine (FOWT) system. The wind turbine was modeled as a wind block with a certain thrust coefficient, and the hydrodynamics and mooting system dynamics of the platform were calculated by SESAM soRware. The effect of change in environmental conditions on the dynamic response of the system under wave and wind loading was examined. The results indicate that the semi-submersible concept has excellent performance and SESAM could be an effective tool for floating wind turbine design and analysis.
文摘Selection of the wind turbine manufacturer is naturally an important issue for wind energy companies when they build new wind farms. This paper describes the main factors by which wind energy companies choose their turbine manufacturers in a selected case region in Finland. The study was conducted using semi-structured interviews, for which the experts and decision makers of selected wind energy companies formed the focus group. During the analysis of the results, it became clear that it was not possible to form a detailed and prioritized list of selection criteria, but still some general themes emerged. The main theme was the manufacturer and product reliability, and then the production volume, cost factors, availability factors, and the organization of maintenance in this order. Interestingly, the arctic conditions of the selected case region did not play any significant role.
基金National Natural Science Foundation of China(5076700350867004)Autonomous university research projects(XJEDU2007105)
文摘The static voltage stability of the power system integrating wind farms adopting different kinds of wind turbines is analyzed. Through the simulation of one certain local power grid in Xinjiang Uygur Autonomous Region, the PV curves at the point of common coupling (PCC), key buses and important substations are plotted; the variation of voltage as well as the limit and margin of static stability are analyzed. It is resulted from the simulation that the limit of static voltage at weak nodes is lower, and the static voltage of the power system with wind farms adopting doubly-fed induction generators (DFIG) is more stable than that with wind farms adopting common asynchronous generators.
文摘Japan's first open sea offshore wind farm, Kamisu offshore windfarm Phase l, was stricken by an earthquake of intensity 6 on the Japanese seismic scale and a five-meter-high tsunami during the Great East Japan Earthquake on March 11,2011. The wind farm resumed operation on March 14 after checks revealed no damage to the system, even though the wind farm was temporarily forced to stop due to the grid failure caused by the earthquake. Wind turbines require a precise seismic design especially in an earthquake-prone country such as Japan. Wind power Kamisu Phase 2 was built one year after the earthquake based on the experience of Kamisu Phase 1. This paper presents the seismic design of offshore wind turbines and the situation during the earthquake and tsunami.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 51379125, 51411130131, 11432009), the National Key Basic Research Development Plan (973 Plan) Project of China (Grant No. 2013CB036103), High Technology of Marine Research Project of the Ministry of Industry and Information Technology of China, ABS(China), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (Grant No. 2013022).
文摘Although the upwind configuration is more popular in the field of wind energy, the downwind one is a promising type for the offshore wind energy due to its special advantages. Different configurations have different aerodynamic performance and it is important to predict the performance of both downwind and upwind configurations accurately for designing and developing more reliable wind turbines. In this paper, a numerical investigation on the aerodynamic performance of National Renewable Energy Laboratory (NREL) phase V1 wind turbine in downwind and upwind configurations is presented. The open source toolbox OpenFOAM coupled with arbitrary mesh interface (AMI) method is applied to tackle rotating problems of wind turbines. Two 3D numerical models of NREL phase VI wind turbine with downwind and upwind configurations under four typical working conditions of incoming wind velocities are set up for the study of different unsteady characteristics of the downwind and upwind configurations, respectively. Numerical results of wake vortex structure, time histories of thrust, pressure distribution on the blade and limiting streamlines which can be used to identify points of separation in a 3D flow are presented. It can be concluded that thrust reduction due to blade-tower interaction is small for upwind wind turbines but relatively large for downwind wind turbines and attention should be paid to the vibration at a certain frequency induced by the cyclic reduction for both configurations. The results and conclusions are helpful to analyze the different aerodynamic performance of wind turbines between downwind and upwind configurations, providing useful references for practical design of wind turbine.
文摘This paper presents an analysis of a pre-feasibility study of a 10 MW offshore wind power project in Nakhon Si Thammarat province, southern Thailand. The wind speeds at the hub heights of large scale wind turbine generators (WTG), i.e. 80-100 m, were extrapolated using monthly mean wind shear coefficients and the l/7th exponent. Using WAsP 9.0, the annual energy production from several models of offshore wind farms using different WTG was analyzed. The capacity factor and the cost of energy were then computed. Using best available estimates, the analysis shows that the estimated annual mean offshore wind speeds at 80-100 m were in the range of 6.4 and 8.3 m/s. The annual energy production by the wind farm from nine models of wind turbine generators were in the range of 20-39 GWh/year, corresponding to a capacity factor in the range of 26-46%, while the cost of energy was 12-15 US cent/kWh.
文摘This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent magnet synchronous generator) is introduced as construction and model. Configurations of different power converters are presented for use with DDPMSG in wind systems at variable speed operation and maximum power capture. Control techniques for the system are discussed for both machine-side and grid-side in details. Grid integration is provided with focus on how to insure power quality of the system and the performance at disturbances.
文摘This paper focuses on the state space modeling approach and output torques prediction of torsional vibrations for variable speed wind turbines. The multi-body system model under study is mainly comprised of a wind turbine, a three stage planetary gear box and an induction generator. The masses-springs approach of shaft system differential equations is developed from Newton's law and Lagrange formulas. For an easy comprehension for electrical engineers and tutorial purpose, an electrical equivalent circuit of the system is proposed by using mechanical and electrical components similarities. Extensive numerical simulations are performed to investigate system mechanical resonances and impacts of damping factors on the system dynamic and stability.
文摘In order to ensure power system stability, modern wind turbines are required to be able to endure deep voltage dips. The specifications that determine the voltage dip versus time are called fault r/de-through (FRT) requirements. The purpose of this paper is not only to examine the FRT behavior of a full-power converter wind turbine but also to combine the power system viewpoint to the studies. It is not enough for the turbine to be FRT capable; the loss of mains (LOM) protection of the turbine must also be set to allow the FRT. Enabling FRT, however, means that the LOM protection settings must be loosen, which may sometimes pose a safety hazard. This article introduces unique real-time simulation environment and proposes an FRT method for a wind turbine that also takes the operation of LOM protection relay into account. Simulations are carried out using the simulation environment and results show that wind turbine is able to ride-through a symmetrical power system fault.
文摘The paper analyzes different turbine design suitable for the urban environment. The author discusses various options for setting up wind turbines in relation to the building. In order to gain insight into the real indicators, considered are actual examples of wind turbines mounted on buildings, sports facilities, roads, etc. However, these turbines have relatively low efficiency and a long payback period, and the problem may be the noise they produce. Therefore, the wind turbines installed in buildings are still more a matter of prestige of individual investors and architects than profitable investment.
基金Supported by National Natural Science Foundation of China(No. 51109160)National High Technology Research and Development Program of China ("863" Program, No. 2012AA051705)International Science and Technology Cooperation Program of China (No. 2012DFA70490)
文摘Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention due to its low cost and great bearing capacity. In order to ensure the cover-bearing mode, the muddy soil inside the bucket foundation should be reinforced by some soil consolidation methods, such as negative pressure and electro-osmosis. Firstly, tests were conducted to obtain the reasonable current density. Meanwhile, to improve the electro-osmotic speed and effectiveness, other factors such as intermittent power and layout of electrode, were also studied in the tests. Then, the soil reinforcing tests by negative pressure combined with electro-osmosis were performed for the muddy soil consolidation inside the bucket foundation. The results showed that soil reinforcement by negative pressure was quicker and more obvious during the early phase, and electro-osmotic method can affect more range of soil by rational arrangement of electrodes. Compared with negative pressure, the electro-osmotic method was a continuous and relatively slow process of reinforcement, which was complementary to the negative pressure method. The voltage value of electro-osmosis had little effect on the muddy soil reinforcement inside the bucket foundation, and 1.5 A was chosen as the most reasonable current value for scale model testing in the electro-osmotic method.
文摘In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation.
文摘Generally, lightning damage has mainly been to home appliances and telephones, towers and power transmission and generation equipment mal functions and damage due to strikes on power lines. With the adoption of wind power generation equipment, however, lightning damage is also increasing in this area. Through his dimensional characteristics, the wind power system is more exposed in the nature compared to all others systems. Lightning damage is the single largest cause of unplanned downtime in wind turbines, and that downtime is responsible for the loss of countless megawatts of power generation. The wind turbines are important structures, since they can easily attract the wrath of storms hits heights close, they can also capture the most distant. The rotation of the blades may also trigger lightning and result in considerable increase in the number of strikes to a wind turbine unit. Since wind turbines are tall structures, the lightning currents that are injected by return strokes into the turbines will be affected by reflections at the top, at the bottom, and at the junction of the blades with the static base of the turbine. We present our contribution in this paper to study lightning strokes and their effects on the wind turbines with the aim to enrich the work and to suggest more effective means of protection against lightning.
文摘Units and components of the powerful power equipment are exposed to the big static and dynamic load. An example of such equipments is turbines hydraulic power plant and, especially, hydroelectric pumped storage power plant. Existing techniques of control of a vibrating condition do not consider: very wide frequency range of vibrating processes, difficult character of such processes in the form of the sum multiharmonic, random and close to shock processes. Such techniques usually do not consider intervals of start-up and stop, and also work on transitive modes when loadings on a construction are maximum. Available techniques of an estimation of admissible level of vibrating influence and tests for vibration durability are not harmonized enough among themselves. Various known interpretations of communication of vibrating characteristics and durability estimations on mechanical pressure at broadband vibrating influence yield ambiguous result. On the basis of the analysis of the published information, we attempt to formulate the requirement to system of vibrating monitoring of the hydraulic turbine and power motor pumps. System should provide data acquisition and the analysis of the data on a vibrating condition taking into account accumulation of vibrating influences and long term of operation on the basis of estimation methods as low-cycle, and high-cycle (gigacycle) fatigue is made.