timizing the formula, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR region. At last, an adjustable parameter is employed to compensate the degrada- tions of BER at low an...timizing the formula, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR region. At last, an adjustable parameter is employed to compensate the degrada- tions of BER at low and moderate SNR regions. Case studies indicate that the improvements of BER for turbo codes with short frame size are significant at a wide range of SNR展开更多
In this paper, the authors design a novel chaotic secure communication system, which has high security and good error correcting capability. Firstly, the Henon Chaos Shift Keying (CSK) modulation block is presented. S...In this paper, the authors design a novel chaotic secure communication system, which has high security and good error correcting capability. Firstly, the Henon Chaos Shift Keying (CSK) modulation block is presented. Secondly, chaotic turbo encoder/decoder (hard decision) is introduced. Thirdly, this chaotic secure communication system, which comprises the Henon CSK modulation block and chaotic turbo encoder in a serially concatenated form, is shown. Furthermore, a novel two step encryption scheme is proposed, which is based on the chaotic turbo encoded Henon CSK secure communication system.展开更多
The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receive...The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receiver, which exchanges soft extrinsic information between a soft-in soft-out(SISO) detector and an SISO decoder in an iterative fashion, is an efficient method to reduce the uplink inter-beam-interference(IBI),and so the receiving bit error rate(BER).We propose to replace the linear SISO detector of traditional dual-turbo iterative detection and decoding with the AMP detector for the low-density parity-check(LDPC) coded multibeam MSC uplink. This improvement can reduce the computational complexity and achieve much lower BER.展开更多
In this paper, we investigate the weighted iterative decoding to improve the performance of turbo-polar code. First of all, a minimum weighted mean square error criterion is proposed to optimize the scaling factors(SF...In this paper, we investigate the weighted iterative decoding to improve the performance of turbo-polar code. First of all, a minimum weighted mean square error criterion is proposed to optimize the scaling factors(SFs). Secondly, for two typical iterative algorithms,such as soft cancellation(SCAN) and belief propagation(BP) decoding, genie-aided decoders are proposed as the ideal reference of the practical decoding. Guided by this optimization framework, the optimal SFs of SCAN or BP decoders are obtained. The bit error rate performance of turbo-polar code with the optimal SFs can achieve 0.3 dB or 0.7 dB performance gains over the standard SCAN or BP decoding respectively.展开更多
A reduced-complexity detection algorithm is proposed, which is applied to iterative receivers for multiple-input multiple-output (MIMO) systems. Unlike the exhaustive search over all the possible trans-mitted symbol...A reduced-complexity detection algorithm is proposed, which is applied to iterative receivers for multiple-input multiple-output (MIMO) systems. Unlike the exhaustive search over all the possible trans-mitted symbol vectors of the optimum maximum a posteriori probability (MAP) detector, the new algo-rithm evaluates only the symbol vectors that contribute significantly to the soft output of the detector. The algorithm is facilitated by carrying out the breadth-first search on a reconfigurable tree, constructed by computing the symbol reliability of each layer based on zero-forcing criterion and reordering the symbols according to the symbol reliabilities. Simulations are presented and the good performance of the new algo-rithm over a quasi-static Rayleigh channel even for relatively small list sizes are proved.展开更多
A new space-time(ST)code design is proposed based on the design criteria of space-time codes,which is applied to the MIMO systems with fewer receive antennas than transmit antennas.The space-time codes,referred to as ...A new space-time(ST)code design is proposed based on the design criteria of space-time codes,which is applied to the MIMO systems with fewer receive antennas than transmit antennas.The space-time codes,referred to as full diversity lossless capacity(FDLLC)ST code,achieve full transmit diversity and lossless equivalent channel capacity for ST precoded systems.Combined FDLLC-ST codes with channel codes,ST bit interleaved coded modulation(ST-BICM)system is constructed and an iterative detector/decoder is employed at the receiver.Simulations are presented.It is proved that the proposed design has good performance compared with other ST precoded MIMO systems.展开更多
The time delay of Turbo codes due to its iterative decoding is the main bottleneck of its application in real-time channel. However, the time delay can be greatly shortened through the adoption of parallel decod-ing a...The time delay of Turbo codes due to its iterative decoding is the main bottleneck of its application in real-time channel. However, the time delay can be greatly shortened through the adoption of parallel decod-ing algorithm, dividing the received bits into several sub-blocks and processing in parallel. This letter mainly discusses the applicability of turbo codes in high-speed real-time channel through the study of a parallel turbo decoding algorithm based on 3GPP-proposed turbo encoder and interleaver in various channel. Simulation re-sult shows that, by choosing an appropriate sub-block length, the time delay can be obviously shortened with-out degrading the performance and increasing hardware complexity, and furthermore indicates the applicability of Turbo codes in high-speed real-time channel.展开更多
基金Supported by the National High Technology Research and Development Programme of China(No.2014AA01A705)the National Natural Science Foundation of China(U1204607)
文摘timizing the formula, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR region. At last, an adjustable parameter is employed to compensate the degrada- tions of BER at low and moderate SNR regions. Case studies indicate that the improvements of BER for turbo codes with short frame size are significant at a wide range of SNR
文摘In this paper, the authors design a novel chaotic secure communication system, which has high security and good error correcting capability. Firstly, the Henon Chaos Shift Keying (CSK) modulation block is presented. Secondly, chaotic turbo encoder/decoder (hard decision) is introduced. Thirdly, this chaotic secure communication system, which comprises the Henon CSK modulation block and chaotic turbo encoder in a serially concatenated form, is shown. Furthermore, a novel two step encryption scheme is proposed, which is based on the chaotic turbo encoded Henon CSK secure communication system.
基金supported by the National Natural Science Foundation of China under Grants 61320106003 and 61401095the Civil Aerospace Technologies Research Project under Grant D010109The Fundamental Research Funds for the Central Universities under Grant YZZ17009
文摘The uplink of mobile satellite communication(MSC) system with hundreds of spot beams is essentially a multiple-input multiple-output(MIMO) channel. Dual-turbo iterative detection and decoding as a kind of MIMO receiver, which exchanges soft extrinsic information between a soft-in soft-out(SISO) detector and an SISO decoder in an iterative fashion, is an efficient method to reduce the uplink inter-beam-interference(IBI),and so the receiving bit error rate(BER).We propose to replace the linear SISO detector of traditional dual-turbo iterative detection and decoding with the AMP detector for the low-density parity-check(LDPC) coded multibeam MSC uplink. This improvement can reduce the computational complexity and achieve much lower BER.
基金supported by the National Natural Science Foundation of China(No.61671080)the National Natural Science Foundation of China(No.61771066)Nokia Beijing Bell Lab
文摘In this paper, we investigate the weighted iterative decoding to improve the performance of turbo-polar code. First of all, a minimum weighted mean square error criterion is proposed to optimize the scaling factors(SFs). Secondly, for two typical iterative algorithms,such as soft cancellation(SCAN) and belief propagation(BP) decoding, genie-aided decoders are proposed as the ideal reference of the practical decoding. Guided by this optimization framework, the optimal SFs of SCAN or BP decoders are obtained. The bit error rate performance of turbo-polar code with the optimal SFs can achieve 0.3 dB or 0.7 dB performance gains over the standard SCAN or BP decoding respectively.
基金Supported by the National Natural Science Foundation of China (No.60332030, 60572157) and the High Technology Research and Development Pro-gramme of China (No.2003AA123310).
文摘A reduced-complexity detection algorithm is proposed, which is applied to iterative receivers for multiple-input multiple-output (MIMO) systems. Unlike the exhaustive search over all the possible trans-mitted symbol vectors of the optimum maximum a posteriori probability (MAP) detector, the new algo-rithm evaluates only the symbol vectors that contribute significantly to the soft output of the detector. The algorithm is facilitated by carrying out the breadth-first search on a reconfigurable tree, constructed by computing the symbol reliability of each layer based on zero-forcing criterion and reordering the symbols according to the symbol reliabilities. Simulations are presented and the good performance of the new algo-rithm over a quasi-static Rayleigh channel even for relatively small list sizes are proved.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 60332030, 60572157)National High Technology Research and Development of China (Grant No. 2003AA123310)
文摘A new space-time(ST)code design is proposed based on the design criteria of space-time codes,which is applied to the MIMO systems with fewer receive antennas than transmit antennas.The space-time codes,referred to as full diversity lossless capacity(FDLLC)ST code,achieve full transmit diversity and lossless equivalent channel capacity for ST precoded systems.Combined FDLLC-ST codes with channel codes,ST bit interleaved coded modulation(ST-BICM)system is constructed and an iterative detector/decoder is employed at the receiver.Simulations are presented.It is proved that the proposed design has good performance compared with other ST precoded MIMO systems.
文摘The time delay of Turbo codes due to its iterative decoding is the main bottleneck of its application in real-time channel. However, the time delay can be greatly shortened through the adoption of parallel decod-ing algorithm, dividing the received bits into several sub-blocks and processing in parallel. This letter mainly discusses the applicability of turbo codes in high-speed real-time channel through the study of a parallel turbo decoding algorithm based on 3GPP-proposed turbo encoder and interleaver in various channel. Simulation re-sult shows that, by choosing an appropriate sub-block length, the time delay can be obviously shortened with-out degrading the performance and increasing hardware complexity, and furthermore indicates the applicability of Turbo codes in high-speed real-time channel.