液滴微流控中芯片微通道的壁面润湿性是决定微滴生成的重要因素之一。为研究环烯烃共聚物芯片微通道表面润湿性对通道内微滴生成以及流体流动行为的影响,利用流体体积(volume of fluid,VOF)模型对聚焦流微通道中水和氟油两相流动行为进...液滴微流控中芯片微通道的壁面润湿性是决定微滴生成的重要因素之一。为研究环烯烃共聚物芯片微通道表面润湿性对通道内微滴生成以及流体流动行为的影响,利用流体体积(volume of fluid,VOF)模型对聚焦流微通道中水和氟油两相流动行为进行数值模拟,并制备了接触角为30°、90°、120°梯度下的芯片微通道壁面开展实验研究,模拟与实验吻合良好。结果表明:在固定物性和结构参数下,壁面润湿性越弱,油包水微滴越容易形成,壁面的减阻特性随之增强,并且壁面的减阻特性导致90°比120°时微滴的生成频率低29.3%,直径增大8.3%;随着润湿性的增强,水相相对于氟油相的界面由凸变凹,30°时芯片生成微滴由油包水变成水包油;随着连续相毛细数(Ca)的升高,壁面润湿性对微滴生成的影响减小。展开更多
Gas–liquid flow in serpentine microchannel with different surface properties exhibits drastically different flow behavior. With water and air as working fluids, the method of numerical simulation was adopted in this ...Gas–liquid flow in serpentine microchannel with different surface properties exhibits drastically different flow behavior. With water and air as working fluids, the method of numerical simulation was adopted in this paper based on CLSVOF(coupled level set and volume of fluid method) multiphase model. After verifying the reasonability of the model through experiment, by changing wall properties and Re number(Re<1500), the influences of contact angle and surface roughness on flow regime and Po number were discussed. Moreover, the difference of pressure drop between curve and straight microchannel was also calculated. Beyond that, the combined effect of curve channel and wall properties on flow resistance was analyzed. This paper finds that wall properties have great influence on gas–liquid flow in microchannels not only on flow regime but also flow characteristics. Meanwhile, the pressure drop in curve microchannels is larger than straight. It is more beneficial for fluid flowing when the straight part of microchannel is hydrophilic smooth wall and curve part is hydrophobic with large roughness.展开更多
文摘液滴微流控中芯片微通道的壁面润湿性是决定微滴生成的重要因素之一。为研究环烯烃共聚物芯片微通道表面润湿性对通道内微滴生成以及流体流动行为的影响,利用流体体积(volume of fluid,VOF)模型对聚焦流微通道中水和氟油两相流动行为进行数值模拟,并制备了接触角为30°、90°、120°梯度下的芯片微通道壁面开展实验研究,模拟与实验吻合良好。结果表明:在固定物性和结构参数下,壁面润湿性越弱,油包水微滴越容易形成,壁面的减阻特性随之增强,并且壁面的减阻特性导致90°比120°时微滴的生成频率低29.3%,直径增大8.3%;随着润湿性的增强,水相相对于氟油相的界面由凸变凹,30°时芯片生成微滴由油包水变成水包油;随着连续相毛细数(Ca)的升高,壁面润湿性对微滴生成的影响减小。
文摘Gas–liquid flow in serpentine microchannel with different surface properties exhibits drastically different flow behavior. With water and air as working fluids, the method of numerical simulation was adopted in this paper based on CLSVOF(coupled level set and volume of fluid method) multiphase model. After verifying the reasonability of the model through experiment, by changing wall properties and Re number(Re<1500), the influences of contact angle and surface roughness on flow regime and Po number were discussed. Moreover, the difference of pressure drop between curve and straight microchannel was also calculated. Beyond that, the combined effect of curve channel and wall properties on flow resistance was analyzed. This paper finds that wall properties have great influence on gas–liquid flow in microchannels not only on flow regime but also flow characteristics. Meanwhile, the pressure drop in curve microchannels is larger than straight. It is more beneficial for fluid flowing when the straight part of microchannel is hydrophilic smooth wall and curve part is hydrophobic with large roughness.