相渗透率研究是油田开发方案编制和生产管理不可缺少的基础工作,在注水开发油田中,由于中轻质油田相对稠油油田具有较长的无水采油期或低含水期,而常规的非稳态实验中相渗数据点在中高含水饱和度处较为集中,因此采用此方法获取的相渗数...相渗透率研究是油田开发方案编制和生产管理不可缺少的基础工作,在注水开发油田中,由于中轻质油田相对稠油油田具有较长的无水采油期或低含水期,而常规的非稳态实验中相渗数据点在中高含水饱和度处较为集中,因此采用此方法获取的相渗数据直接应用到中轻质油田生产动态分析及数模拟合中误差较大。针对以上问题,对渤南区域中轻质油田分别采用稳态与非稳态两种实验方法获取相渗数据并开展研究,结果表明:当地层原油黏度小于6 m Pa·s时,两种实验方法结果差异较大,宜采用稳态法;当原油黏度高于6 m Pa·s时,差异可忽略不计,宜采用非稳态法代替稳态法。研究发现,非润湿相黏度、沉积相特征、润湿性、温度等因素对中轻质油藏相渗曲线形态及含水上升规律都有不同程度的影响,在油田开发研究中应综合考虑。展开更多
To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that alt...To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that although the added Ti existed within Ti(Al1-xSix)3(0≤x≤0.15) phase,the shear strength and shear fracture surface of the developed Al-12Si-xTi brazes were quite similar to those of traditional Al-12Si braze due to the presence of similar microstructure of Al-Si eutectic microstructure with large volume fraction.So,small Ti addition(~1%) did not make the active brazes brittle and hard compared with the conventional Al-12Si braze.The measured melting range of each Al-12Si-xTi foil was very similar,i.e.,580-590 ℃,because the composition was close to that of eutectic.For wettability improvement,with increasing Ti content,the interfacial gap between the Al2O3 reinforcement and filler metal(R/M) could be eliminated,and the amount of the remainder of the active fillers on the composite substrate decreased after sessile drop test at 610 ℃ for 30 min.So,the wettability improvement became easy to observe repeatedly with increasing Ti content.Additionally,the amount and size of Ti(AlSi)3 phase were sensitive to the Ti content(before brazing) and Si content(after brazing).展开更多
Gas–liquid flow in serpentine microchannel with different surface properties exhibits drastically different flow behavior. With water and air as working fluids, the method of numerical simulation was adopted in this ...Gas–liquid flow in serpentine microchannel with different surface properties exhibits drastically different flow behavior. With water and air as working fluids, the method of numerical simulation was adopted in this paper based on CLSVOF(coupled level set and volume of fluid method) multiphase model. After verifying the reasonability of the model through experiment, by changing wall properties and Re number(Re<1500), the influences of contact angle and surface roughness on flow regime and Po number were discussed. Moreover, the difference of pressure drop between curve and straight microchannel was also calculated. Beyond that, the combined effect of curve channel and wall properties on flow resistance was analyzed. This paper finds that wall properties have great influence on gas–liquid flow in microchannels not only on flow regime but also flow characteristics. Meanwhile, the pressure drop in curve microchannels is larger than straight. It is more beneficial for fluid flowing when the straight part of microchannel is hydrophilic smooth wall and curve part is hydrophobic with large roughness.展开更多
In order to improve the wettability and biocompatibility of the poly (butylene terephthalate) non-woven (PBTNW), the method of surface modification is used to graft copolymerization of chitosan (CS) onto the PBT...In order to improve the wettability and biocompatibility of the poly (butylene terephthalate) non-woven (PBTNW), the method of surface modification is used to graft copolymerization of chitosan (CS) onto the PBTNW under alkylpolyglycoside (APG) inducing. The product is thoroughly characterized with the Fourier transform infrared spectroscopy (FrIR), the electron spectroscopy for chemical analysis (ESCA), the thermogravimetric (TG) and the scanning electron microscopy (SEM). It is found that chitosan is successfully grafted onto PBTNW. In addition, the water contact angles, hemolysis tests and cytotoxicity evaluation tests show an improvement in wettability and biocompatihility as a result of graft copolymerization of chitosan. So the CS-grafted PBTNW exhibits greater superiority than the original PBTNW. The CS-grafted PBTNW can be a candidate for blood filter materials and other medical applications.展开更多
Sandstone oil reservoirs with huge bottom water and high permeability are generally developed with high flow rate.After long-term water flooding(LTWF),the water flooding characteristics are quite different from that o...Sandstone oil reservoirs with huge bottom water and high permeability are generally developed with high flow rate.After long-term water flooding(LTWF),the water flooding characteristics are quite different from that of original reservoir.In this paper,the effects of the PV number,viscosity,and displacement rate during LTWF are studied through experiments.The mechanism is analyzed based on analysis of changes in oil composition,rock mineral composition and wettability.The oil-water relative permeability curves,oil recovery and wettability were obtained with new experiments methods,which avoids the oil metering error by measuring oil and water separately.The research indicates that when the viscosity increases,the water phase permeability decreases,the residual oil saturation increases,and the water content rate increases earlier.A higher water flooding rate results in a higher ultimate recovery.A higher asphaltene content results in a higher viscosity and more oil-wet reservoir conditions.After LTWF,the wettability tends to water-wet,which is more favorable for heavy oil recovery.Moreover,LTWF reduces the clay content,which creates a more water-wet surface and a larger reservoir pore throat environment.This research provides insightful characteristics of offshore sandstone oil reservoirs,which can be used to enhance oil recovery.展开更多
Water confined in nanoscale space behaves quite differently from that in the bulk.For example,in biological aquaporins and in carbon nanotubes,the traversing water molecules form a single file configuration.Water woul...Water confined in nanoscale space behaves quite differently from that in the bulk.For example,in biological aquaporins and in carbon nanotubes,the traversing water molecules form a single file configuration.Water would stay in vapor state in extremely hydrophobic narrow nanopores owing to the physicochemical interactions between the water molecules and the surface of the nanopore.A spontaneous wet-dry transition has been identified in both biological and artificial nanopores.The nanopore is either fulfilled with liquid water or completely empty.Based on this mechanism,the wetting and dewetting processes inside nanopores have been further developed into highly efficient nanofluidic gates that can be switched by external stimuli,such as light irradiation,electric potential,temperature,and mechanical pressure.This review briefly covers the recent progress in the special wettability in nanoconfined environment,water transportation through biological or artificial nanochannels,as well as the smart nanofluidic gating system controlled by the water wettability.展开更多
Thermal-induced transformation of wetting behaviors on laser-textured silicon carbide (SIC) surfaces was discussed in this work. To investigate the transformation, a quenching experiment was conducted and an X-ray d...Thermal-induced transformation of wetting behaviors on laser-textured silicon carbide (SIC) surfaces was discussed in this work. To investigate the transformation, a quenching experiment was conducted and an X-ray diffractometer was used to measure the residual stress. The experimental results demonstrate that the significantly enhanced hydrophilicity was induced by the increasing thermal residual stress of SiC materials after the aqueous quenching. It was found that the decrease in the contact angle increased with the increasing quenching temperature. Quenching at 350℃ led to the change of contact angle from 89.28° to 70.88° for the smooth surface, while from 72.25° to 33.75° for the laser-textured surface with depth 8 μm. Further, the surface hydrophobicity was enhanced by the release of thermal residual stress after quenching, thereby leading to an increase in the contact angle over time. The transformation of wetting behaviors on laser textured SiC surfaces can be achieved mutually by the aqueous quenching method.展开更多
Mytilus galloprovincialis is a major fouling organism in the inter-tidal zone.However,the interactions between M.galloprovincialis plantigrade settlement,biofilm characteristics,and surface wettability remains unknown...Mytilus galloprovincialis is a major fouling organism in the inter-tidal zone.However,the interactions between M.galloprovincialis plantigrade settlement,biofilm characteristics,and surface wettability remains unknown.Here,we examined M.galloprovincialis plantigrade settlement responses to marine biofilms(BFs)on surfaces of varying wettability.No significant difference in mussel settlement was observed on young BFs(7 d)on surfaces of differing wettability;while settlement decreased on older BFs(14,21,and 28 d)formed on low compared to high wettability surfaces.Surface wettability affected BF characteristics.The standardized harmonic mean and water contact angles values were not correlated with diatom density and chlorophyll a concentration,but were correlated with bacterial density,dry weight,and thickness.Denaturing gradient gel electrophoresis revealed that bacterial community structure differed on BFs on surfaces of varying wettability.Thus,surface wettability affects biofilm characteristics,and the subsequent changes in BF characteristics may be responsible for the variation in biofilm-inducing activity of M.galloprovincialis plantigrade settlement.展开更多
文摘相渗透率研究是油田开发方案编制和生产管理不可缺少的基础工作,在注水开发油田中,由于中轻质油田相对稠油油田具有较长的无水采油期或低含水期,而常规的非稳态实验中相渗数据点在中高含水饱和度处较为集中,因此采用此方法获取的相渗数据直接应用到中轻质油田生产动态分析及数模拟合中误差较大。针对以上问题,对渤南区域中轻质油田分别采用稳态与非稳态两种实验方法获取相渗数据并开展研究,结果表明:当地层原油黏度小于6 m Pa·s时,两种实验方法结果差异较大,宜采用稳态法;当原油黏度高于6 m Pa·s时,差异可忽略不计,宜采用非稳态法代替稳态法。研究发现,非润湿相黏度、沉积相特征、润湿性、温度等因素对中轻质油藏相渗曲线形态及含水上升规律都有不同程度的影响,在油田开发研究中应综合考虑。
基金Project(50875199) supported by the National Natural Science Foundation of ChinaProject supported by State Key Laboratory of Advanced Welding and Joining,China
文摘To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that although the added Ti existed within Ti(Al1-xSix)3(0≤x≤0.15) phase,the shear strength and shear fracture surface of the developed Al-12Si-xTi brazes were quite similar to those of traditional Al-12Si braze due to the presence of similar microstructure of Al-Si eutectic microstructure with large volume fraction.So,small Ti addition(~1%) did not make the active brazes brittle and hard compared with the conventional Al-12Si braze.The measured melting range of each Al-12Si-xTi foil was very similar,i.e.,580-590 ℃,because the composition was close to that of eutectic.For wettability improvement,with increasing Ti content,the interfacial gap between the Al2O3 reinforcement and filler metal(R/M) could be eliminated,and the amount of the remainder of the active fillers on the composite substrate decreased after sessile drop test at 610 ℃ for 30 min.So,the wettability improvement became easy to observe repeatedly with increasing Ti content.Additionally,the amount and size of Ti(AlSi)3 phase were sensitive to the Ti content(before brazing) and Si content(after brazing).
文摘Gas–liquid flow in serpentine microchannel with different surface properties exhibits drastically different flow behavior. With water and air as working fluids, the method of numerical simulation was adopted in this paper based on CLSVOF(coupled level set and volume of fluid method) multiphase model. After verifying the reasonability of the model through experiment, by changing wall properties and Re number(Re<1500), the influences of contact angle and surface roughness on flow regime and Po number were discussed. Moreover, the difference of pressure drop between curve and straight microchannel was also calculated. Beyond that, the combined effect of curve channel and wall properties on flow resistance was analyzed. This paper finds that wall properties have great influence on gas–liquid flow in microchannels not only on flow regime but also flow characteristics. Meanwhile, the pressure drop in curve microchannels is larger than straight. It is more beneficial for fluid flowing when the straight part of microchannel is hydrophilic smooth wall and curve part is hydrophobic with large roughness.
文摘In order to improve the wettability and biocompatibility of the poly (butylene terephthalate) non-woven (PBTNW), the method of surface modification is used to graft copolymerization of chitosan (CS) onto the PBTNW under alkylpolyglycoside (APG) inducing. The product is thoroughly characterized with the Fourier transform infrared spectroscopy (FrIR), the electron spectroscopy for chemical analysis (ESCA), the thermogravimetric (TG) and the scanning electron microscopy (SEM). It is found that chitosan is successfully grafted onto PBTNW. In addition, the water contact angles, hemolysis tests and cytotoxicity evaluation tests show an improvement in wettability and biocompatihility as a result of graft copolymerization of chitosan. So the CS-grafted PBTNW exhibits greater superiority than the original PBTNW. The CS-grafted PBTNW can be a candidate for blood filter materials and other medical applications.
基金Project(51674273)supported by the National Natural Science Foundation of ChinaProject(CNOOCKJ135ZDXM22LTD02SZ2016)supported by the Major Science and Technology Projects of CNOOC,China。
文摘Sandstone oil reservoirs with huge bottom water and high permeability are generally developed with high flow rate.After long-term water flooding(LTWF),the water flooding characteristics are quite different from that of original reservoir.In this paper,the effects of the PV number,viscosity,and displacement rate during LTWF are studied through experiments.The mechanism is analyzed based on analysis of changes in oil composition,rock mineral composition and wettability.The oil-water relative permeability curves,oil recovery and wettability were obtained with new experiments methods,which avoids the oil metering error by measuring oil and water separately.The research indicates that when the viscosity increases,the water phase permeability decreases,the residual oil saturation increases,and the water content rate increases earlier.A higher water flooding rate results in a higher ultimate recovery.A higher asphaltene content results in a higher viscosity and more oil-wet reservoir conditions.After LTWF,the wettability tends to water-wet,which is more favorable for heavy oil recovery.Moreover,LTWF reduces the clay content,which creates a more water-wet surface and a larger reservoir pore throat environment.This research provides insightful characteristics of offshore sandstone oil reservoirs,which can be used to enhance oil recovery.
基金supported by the National Research Fund for Fundamental Key Projects(Grant No.2011CB935700)the National Natural Science Foundation of China(Grant Nos.11290163,21103201,91127025 and 21121001)the Key Research Program of the Chinese Academy of Sciences(Grant No.KJZD-EW-M01)
文摘Water confined in nanoscale space behaves quite differently from that in the bulk.For example,in biological aquaporins and in carbon nanotubes,the traversing water molecules form a single file configuration.Water would stay in vapor state in extremely hydrophobic narrow nanopores owing to the physicochemical interactions between the water molecules and the surface of the nanopore.A spontaneous wet-dry transition has been identified in both biological and artificial nanopores.The nanopore is either fulfilled with liquid water or completely empty.Based on this mechanism,the wetting and dewetting processes inside nanopores have been further developed into highly efficient nanofluidic gates that can be switched by external stimuli,such as light irradiation,electric potential,temperature,and mechanical pressure.This review briefly covers the recent progress in the special wettability in nanoconfined environment,water transportation through biological or artificial nanochannels,as well as the smart nanofluidic gating system controlled by the water wettability.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR14E050001)the National Natural Science Foundation of China(Grant No.51275473)
文摘Thermal-induced transformation of wetting behaviors on laser-textured silicon carbide (SIC) surfaces was discussed in this work. To investigate the transformation, a quenching experiment was conducted and an X-ray diffractometer was used to measure the residual stress. The experimental results demonstrate that the significantly enhanced hydrophilicity was induced by the increasing thermal residual stress of SiC materials after the aqueous quenching. It was found that the decrease in the contact angle increased with the increasing quenching temperature. Quenching at 350℃ led to the change of contact angle from 89.28° to 70.88° for the smooth surface, while from 72.25° to 33.75° for the laser-textured surface with depth 8 μm. Further, the surface hydrophobicity was enhanced by the release of thermal residual stress after quenching, thereby leading to an increase in the contact angle over time. The transformation of wetting behaviors on laser textured SiC surfaces can be achieved mutually by the aqueous quenching method.
基金supported by the National Natural Science Foundation ofChina(Grant No.41476131)the Innovation Program of Shanghai Municipal Education Commission(Grant No.14ZZ143)the Shanghai Universities Plateau Discipline Project of Marine Sciences and the Peak Discipline Program for Fisheries from the Shanghai Municipal Government
文摘Mytilus galloprovincialis is a major fouling organism in the inter-tidal zone.However,the interactions between M.galloprovincialis plantigrade settlement,biofilm characteristics,and surface wettability remains unknown.Here,we examined M.galloprovincialis plantigrade settlement responses to marine biofilms(BFs)on surfaces of varying wettability.No significant difference in mussel settlement was observed on young BFs(7 d)on surfaces of differing wettability;while settlement decreased on older BFs(14,21,and 28 d)formed on low compared to high wettability surfaces.Surface wettability affected BF characteristics.The standardized harmonic mean and water contact angles values were not correlated with diatom density and chlorophyll a concentration,but were correlated with bacterial density,dry weight,and thickness.Denaturing gradient gel electrophoresis revealed that bacterial community structure differed on BFs on surfaces of varying wettability.Thus,surface wettability affects biofilm characteristics,and the subsequent changes in BF characteristics may be responsible for the variation in biofilm-inducing activity of M.galloprovincialis plantigrade settlement.