A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed r...A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed ratio are determined by integrating differential equations based on rolling parameters.The lubrication characteristics at the roll-strip interface with different surface roughness,rolling speed,reduction and lubricant viscosity are analyzed respectively.Additionally,the average volume flow rates of lubricant under different rolling conditions are calculated and used to explain the change rule of lubrication characteristics.The developed scheme is able to determine the total pressure,lubricant pressure,film thickness and real contact area at any point within the work zone.The prediction and analysis of mixed lubrication characteristics at the interface is meaningful to better control the surface quality and optimize the rolling process.展开更多
This article illustrates the application of the ICR series lube oil isodewaxing catalysts in commercial scale and proposes the strategy on long cycle operation and optimization of catalysts. The results of commercial ...This article illustrates the application of the ICR series lube oil isodewaxing catalysts in commercial scale and proposes the strategy on long cycle operation and optimization of catalysts. The results of commercial application of the catalyst have revealed that the catalyst after pretreatment including drying, sulfidation and reduction can process VGO into base oils meeting the HVI II and HVI II+ standards, and can manufacture base oils meeting the HVI III standard after incorporating the filtrate oil or gatch from acetone-benzene solvent dewaxing unit. The nitrogen content of the feed oil to the IDW reactor should be controlled at 1.0—1.5 ppm, while the CO and CO2 contents in fresh hydrogen is strictly controlled to avoid poisoning of the IDW-HDF catalysts.展开更多
Aluminum alloy base surface hybrid composites were fabricated by incorporating with mixture of (SiC+Gr) and (SiC+Al2O3) particles of 20 μm in average size on an aluminum alloy 6061-T6 plate using friction stir ...Aluminum alloy base surface hybrid composites were fabricated by incorporating with mixture of (SiC+Gr) and (SiC+Al2O3) particles of 20 μm in average size on an aluminum alloy 6061-T6 plate using friction stir processing (FSP). Microstructures of both the surface hybrid composites revealed that SiC, Gr and Al2O3 are uniformly dispersed in the nugget zone (NZ). It was observed that the addition of Gr particles rather than Al2O3 particles with SiC particles, decreases the microhardness but immensely increases the dry sliding wear resistance of aluminum alloy 6061-T6 surface hybrid composite. The observed microhardness and wear properties are correlated with microstructures and worn micrographs.展开更多
The development trend of the CVJ (constant velocity joint) greases is briefly introduced in this paper. Based on the evaluation of various base stocks, thickeners and additives, the formulation and manufacture of the ...The development trend of the CVJ (constant velocity joint) greases is briefly introduced in this paper. Based on the evaluation of various base stocks, thickeners and additives, the formulation and manufacture of the long-life CVJ grease is finalized. Bench tests and vehicle performance evaluation tests have showed that the ‘Great Wall brand’ new polyurea-based CVJ grease can meet the demand of automo- tive CVJ. This grease features an outstanding low and high temperature performance, extreme pressure, anti-corrosion and anti-rust properties equivalent to those of similar overseas greases. Compared with the traditional MoS2 containing lithium based CVJ grease, the performance of the new grease is much better.展开更多
In recent decades, a growing worldwide trend of developing the biodegradable lubricants has been prevailing to form a specific field of green chemistry and green engineering. Enhancement of biodegradability of unreadi...In recent decades, a growing worldwide trend of developing the biodegradable lubricants has been prevailing to form a specific field of green chemistry and green engineering. Enhancement of biodegradability of unreadily biodegradable petroleum-based lubricants has as such become an urgent must. For over a decade the authors have been focusing on the improvement of biodegradability of unreadily biodegradable lubricants such as petroleum-based lubricating oils and greases. A new idea of lubricant biodegradation enhancer was put forward by the authors with the aim to stimulate the biodegradation of unreadily biodegradable lubricants by incorporating the enhancer into the lubricants in order to turn the lubricants into greener biodegradable ones and to help in situ bioremediation of lubricant-contaminated environment. This manuscript summarizes our recent efforts relating to the chemistry and technology of biodegradation enhancers for lubricants. Firstly, the chemistry of lubricant biodegradation enhancers was designed based on the principles of bioremediation for the treatment of hydrocarbon contaminated environment. Secondly, the ability of the designed biodegradation enhancers for increasing the biodegradability of unreadily biodegradable industrial lubricants was investigated through biodegradability evaluation tests, microbial population analysis, and biodegradation kinetics modeling. Finally, the impact of biodegradation enhancers on some crucial performance characteristics of lubricants such as lubricity and oxidation stability was tested via tribological evaluation and oxidation determinations. Our results have shown that the designed chemistry of nitrogenous and/or phosphorous compounds such as lauroyl glutamine, oleoyl glycine, oleic diethanolamide phosphate and lauric diethanolamide borate was outstanding in boosting biodegradation of petroleum-based lubricants which was ascribed to increase the microbial population and decrease the oil-water interfacial tension during the biodegradation process. Lubricants doped with the biodegradation enhancers exhibited much better biodegradability and higher biodegradation rate in the surrounding soils which could be well modeled by the exponential biodegradation kinetics. Furthermore, as lubricant dopants, the biodegradation enhancers also provided excellent capability in reducing friction and wear and in retarding oxidation of lubricants. In the nature of things, lubricant biodegradation enhancers, which are multi-functional not only in the improvement of biodegradability, but also in the fortification of lubricity and in the inhibition of oxidation of lubricants, are expected to be promising as a new category of lubricant additives.展开更多
Cost, the effect on the environment, and health issues are relevant when considering the choice of a lubricant and application system in a modern metal cutting process. This paper provided a general introduction to me...Cost, the effect on the environment, and health issues are relevant when considering the choice of a lubricant and application system in a modern metal cutting process. This paper provided a general introduction to metalworking fluids, reviewed the benefits and negative effects attributed to the production of mist during cutting processes. Due to the increasing concern over workers exposed to cutting fluid mist, and to achieve the recommended exposure limit, much attention was focused on how to minimize or prevent the mist formation. Different proposed techniques were analyzed, each of them has its advantages and limitations. Finally, the benefits of minimum quantity of lubrication (MQL) technique over all other techniques were studied.展开更多
A pilot wire drawing machine as well as wire end-pointing roller was developed. Using these machines, a wire drawing test for four different coating materials and two different lubricants was performed as the reductio...A pilot wire drawing machine as well as wire end-pointing roller was developed. Using these machines, a wire drawing test for four different coating materials and two different lubricants was performed as the reduction ratio increased from 10% to 30%. Materials used for a substrate in this study are plain carbon steel (AIS11045) and ultra low carbon bainite steel. To compute the friction coefficient between the coating layer of wire and the surface of die lbr a specific lubricant, a series of finite element analyses were carried out. SEM observations were also conducted to investigate the surface defects of wire deformed. Results show that the behavior of drawing force varies with the lubricant-type at the initial stage of drawing. The powder-typed lubricant with a large particle causes the retardation of lull lubrication on the entire contact surface and the local delamination of coating layer on the wire surface. As the flow stress of a substrate increases, the delamination becomes severe.展开更多
To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadra...To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadratic polynomial with intercrossing term and then mapped into the Hertz contact zone. Considering the randomness of the EHL, material properties and fatigue strength correction factors, the probabilistic reliability analysis model is established using artificial neural network(ANN). Genetic algorithm(GA) is employed to search the minimum reliability index and the design point by introducing an adjusting factor in penalty function. Reliability sensitivity analysis is completed based on the advanced first order second moment(AFOSM). Numerical example shows that the established probabilistic reliability analysis model could correctly reflect the effect of EHL on contact fatigue of spur gear, and the proposed intelligent method has an excellent global search capability as well as a highly efficient computing performance compared with the traditional Monte Carlo method(MCM).展开更多
The application of cutting fluids in machining brings out many benefits, but their use is accompanied by health and enviroment hazards. MQL (Minimum Quantity Lubricant) has become a preciously alternative solution f...The application of cutting fluids in machining brings out many benefits, but their use is accompanied by health and enviroment hazards. MQL (Minimum Quantity Lubricant) has become a preciously alternative solution for lubrication against dry machinning and flood cooling lubricant, and this is a step toward green machining. This paper presents a comprehensively experiemental study on investigation of MQL performance in hard milling of S60C steel for multiple responses, including surface quality, cutting forces and tool wear. Compared to dry milling, even-enhanced surfaces finish quality, 20% less cutting force (Ft) and almost 112% prolonged tool lifetime are achieved by using MQL with 5% Emulsion in hard milling. In addition, this study compared the performances of MQL milling by using 5% Emulsion to the peanut oil completely harmless to the enviroment. This encouraging result, therefore, reveals that the MQL-employed hard milling can enable significant improvement in productivity, product quality, and overall machining economy even after covering the additional cost of designing and implementing MQL system. Moreover, this study also shows the limitation of peanut oils employed in MQL and proposes the further research in novel additives to enhance the performance of cooling lubricant for vegetable oils.展开更多
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
基金Project(2012BAF09B04)supported by the National Key Technology Research and Development Program of China
文摘A theoretical model for mixed lubrication with more accurate contact length has been developed based on the average volume flow model and asperity flattening model,and the lubricant volume flow rate and outlet speed ratio are determined by integrating differential equations based on rolling parameters.The lubrication characteristics at the roll-strip interface with different surface roughness,rolling speed,reduction and lubricant viscosity are analyzed respectively.Additionally,the average volume flow rates of lubricant under different rolling conditions are calculated and used to explain the change rule of lubrication characteristics.The developed scheme is able to determine the total pressure,lubricant pressure,film thickness and real contact area at any point within the work zone.The prediction and analysis of mixed lubrication characteristics at the interface is meaningful to better control the surface quality and optimize the rolling process.
文摘This article illustrates the application of the ICR series lube oil isodewaxing catalysts in commercial scale and proposes the strategy on long cycle operation and optimization of catalysts. The results of commercial application of the catalyst have revealed that the catalyst after pretreatment including drying, sulfidation and reduction can process VGO into base oils meeting the HVI II and HVI II+ standards, and can manufacture base oils meeting the HVI III standard after incorporating the filtrate oil or gatch from acetone-benzene solvent dewaxing unit. The nitrogen content of the feed oil to the IDW reactor should be controlled at 1.0—1.5 ppm, while the CO and CO2 contents in fresh hydrogen is strictly controlled to avoid poisoning of the IDW-HDF catalysts.
文摘Aluminum alloy base surface hybrid composites were fabricated by incorporating with mixture of (SiC+Gr) and (SiC+Al2O3) particles of 20 μm in average size on an aluminum alloy 6061-T6 plate using friction stir processing (FSP). Microstructures of both the surface hybrid composites revealed that SiC, Gr and Al2O3 are uniformly dispersed in the nugget zone (NZ). It was observed that the addition of Gr particles rather than Al2O3 particles with SiC particles, decreases the microhardness but immensely increases the dry sliding wear resistance of aluminum alloy 6061-T6 surface hybrid composite. The observed microhardness and wear properties are correlated with microstructures and worn micrographs.
文摘The development trend of the CVJ (constant velocity joint) greases is briefly introduced in this paper. Based on the evaluation of various base stocks, thickeners and additives, the formulation and manufacture of the long-life CVJ grease is finalized. Bench tests and vehicle performance evaluation tests have showed that the ‘Great Wall brand’ new polyurea-based CVJ grease can meet the demand of automo- tive CVJ. This grease features an outstanding low and high temperature performance, extreme pressure, anti-corrosion and anti-rust properties equivalent to those of similar overseas greases. Compared with the traditional MoS2 containing lithium based CVJ grease, the performance of the new grease is much better.
基金the financial support provided by the National Natural Science Foundation of China (project Nos.50975282 and 50275147)the Natural Science Foundation of Chongqing, China (project No. CSTC 2008BA4037)
文摘In recent decades, a growing worldwide trend of developing the biodegradable lubricants has been prevailing to form a specific field of green chemistry and green engineering. Enhancement of biodegradability of unreadily biodegradable petroleum-based lubricants has as such become an urgent must. For over a decade the authors have been focusing on the improvement of biodegradability of unreadily biodegradable lubricants such as petroleum-based lubricating oils and greases. A new idea of lubricant biodegradation enhancer was put forward by the authors with the aim to stimulate the biodegradation of unreadily biodegradable lubricants by incorporating the enhancer into the lubricants in order to turn the lubricants into greener biodegradable ones and to help in situ bioremediation of lubricant-contaminated environment. This manuscript summarizes our recent efforts relating to the chemistry and technology of biodegradation enhancers for lubricants. Firstly, the chemistry of lubricant biodegradation enhancers was designed based on the principles of bioremediation for the treatment of hydrocarbon contaminated environment. Secondly, the ability of the designed biodegradation enhancers for increasing the biodegradability of unreadily biodegradable industrial lubricants was investigated through biodegradability evaluation tests, microbial population analysis, and biodegradation kinetics modeling. Finally, the impact of biodegradation enhancers on some crucial performance characteristics of lubricants such as lubricity and oxidation stability was tested via tribological evaluation and oxidation determinations. Our results have shown that the designed chemistry of nitrogenous and/or phosphorous compounds such as lauroyl glutamine, oleoyl glycine, oleic diethanolamide phosphate and lauric diethanolamide borate was outstanding in boosting biodegradation of petroleum-based lubricants which was ascribed to increase the microbial population and decrease the oil-water interfacial tension during the biodegradation process. Lubricants doped with the biodegradation enhancers exhibited much better biodegradability and higher biodegradation rate in the surrounding soils which could be well modeled by the exponential biodegradation kinetics. Furthermore, as lubricant dopants, the biodegradation enhancers also provided excellent capability in reducing friction and wear and in retarding oxidation of lubricants. In the nature of things, lubricant biodegradation enhancers, which are multi-functional not only in the improvement of biodegradability, but also in the fortification of lubricity and in the inhibition of oxidation of lubricants, are expected to be promising as a new category of lubricant additives.
文摘Cost, the effect on the environment, and health issues are relevant when considering the choice of a lubricant and application system in a modern metal cutting process. This paper provided a general introduction to metalworking fluids, reviewed the benefits and negative effects attributed to the production of mist during cutting processes. Due to the increasing concern over workers exposed to cutting fluid mist, and to achieve the recommended exposure limit, much attention was focused on how to minimize or prevent the mist formation. Different proposed techniques were analyzed, each of them has its advantages and limitations. Finally, the benefits of minimum quantity of lubrication (MQL) technique over all other techniques were studied.
基金supported by research funds from Dong-A University, Korea
文摘A pilot wire drawing machine as well as wire end-pointing roller was developed. Using these machines, a wire drawing test for four different coating materials and two different lubricants was performed as the reduction ratio increased from 10% to 30%. Materials used for a substrate in this study are plain carbon steel (AIS11045) and ultra low carbon bainite steel. To compute the friction coefficient between the coating layer of wire and the surface of die lbr a specific lubricant, a series of finite element analyses were carried out. SEM observations were also conducted to investigate the surface defects of wire deformed. Results show that the behavior of drawing force varies with the lubricant-type at the initial stage of drawing. The powder-typed lubricant with a large particle causes the retardation of lull lubrication on the entire contact surface and the local delamination of coating layer on the wire surface. As the flow stress of a substrate increases, the delamination becomes severe.
基金Project(CX2014B060) supported by Hunan Provincial Innovation for Postgraduate,ChinaProject(8130208) supported by General Armament Pre-research Foundation
文摘To complete the contact fatigue reliability analysis of spur gear under elastohydrodynamic lubrication(EHL) efficiently and accurately, an intelligent method is proposed. Oil film pressure is approximated using quadratic polynomial with intercrossing term and then mapped into the Hertz contact zone. Considering the randomness of the EHL, material properties and fatigue strength correction factors, the probabilistic reliability analysis model is established using artificial neural network(ANN). Genetic algorithm(GA) is employed to search the minimum reliability index and the design point by introducing an adjusting factor in penalty function. Reliability sensitivity analysis is completed based on the advanced first order second moment(AFOSM). Numerical example shows that the established probabilistic reliability analysis model could correctly reflect the effect of EHL on contact fatigue of spur gear, and the proposed intelligent method has an excellent global search capability as well as a highly efficient computing performance compared with the traditional Monte Carlo method(MCM).
文摘The application of cutting fluids in machining brings out many benefits, but their use is accompanied by health and enviroment hazards. MQL (Minimum Quantity Lubricant) has become a preciously alternative solution for lubrication against dry machinning and flood cooling lubricant, and this is a step toward green machining. This paper presents a comprehensively experiemental study on investigation of MQL performance in hard milling of S60C steel for multiple responses, including surface quality, cutting forces and tool wear. Compared to dry milling, even-enhanced surfaces finish quality, 20% less cutting force (Ft) and almost 112% prolonged tool lifetime are achieved by using MQL with 5% Emulsion in hard milling. In addition, this study compared the performances of MQL milling by using 5% Emulsion to the peanut oil completely harmless to the enviroment. This encouraging result, therefore, reveals that the MQL-employed hard milling can enable significant improvement in productivity, product quality, and overall machining economy even after covering the additional cost of designing and implementing MQL system. Moreover, this study also shows the limitation of peanut oils employed in MQL and proposes the further research in novel additives to enhance the performance of cooling lubricant for vegetable oils.