The oil solubility of synthetic oleic acid tris-(2-hydroxyethyl) isocyanurate phosphate ester(abbreviated as OHTP hereinafter) and its influence on the biodegradability and tribological performance of 400 SN mineral o...The oil solubility of synthetic oleic acid tris-(2-hydroxyethyl) isocyanurate phosphate ester(abbreviated as OHTP hereinafter) and its influence on the biodegradability and tribological performance of 400 SN mineral oil were investigated on a tester and a four-ball tribotester,respectively,for fast evaluating the biodegradability of lubricants.Furthermore,the morphologies and tribochemical species of the worn surfaces lubricated by OHTP-doped oil were studied by scanning electron microscope(SEM) and X-ray photoelectron spectroscope(XPS).The results indicated that OHTP possessed good oil solubility and could improve obviously the biodegradability,the extreme pressure properties,the anti-wear properties and friction-reducing properties of the 400 SN mineral oil.The analytical results of XPS spectra showed that the composite boundary lubrication films were mainly composed of absorbed films and tribochemical species such as FePO-4,Fe_3(PO_4)_2,Fe_2O_3 and Fe_3O_4,which contributed to improving the tribological performances.展开更多
基金the financial support from the National Defense Science Technology Foundation (Project No.3604003)the National Natural Science Foundation of China (Project No.51375491)+1 种基金the Natural Science Foundation of Chongqing (Project No.CSTC,2014JCYJAA50021)the Natural Science Foundation of Chongqing (Project No.cstc2017jcyj AX0058)
文摘The oil solubility of synthetic oleic acid tris-(2-hydroxyethyl) isocyanurate phosphate ester(abbreviated as OHTP hereinafter) and its influence on the biodegradability and tribological performance of 400 SN mineral oil were investigated on a tester and a four-ball tribotester,respectively,for fast evaluating the biodegradability of lubricants.Furthermore,the morphologies and tribochemical species of the worn surfaces lubricated by OHTP-doped oil were studied by scanning electron microscope(SEM) and X-ray photoelectron spectroscope(XPS).The results indicated that OHTP possessed good oil solubility and could improve obviously the biodegradability,the extreme pressure properties,the anti-wear properties and friction-reducing properties of the 400 SN mineral oil.The analytical results of XPS spectra showed that the composite boundary lubrication films were mainly composed of absorbed films and tribochemical species such as FePO-4,Fe_3(PO_4)_2,Fe_2O_3 and Fe_3O_4,which contributed to improving the tribological performances.