We analyze the correlation properties of the Erd6s-Rdnyi random graph (RG) and the Barabdsi-Albert scale-free network (SF) under the attack and repair strategy with detrended fluctuation analysis (DFA). The maxi...We analyze the correlation properties of the Erd6s-Rdnyi random graph (RG) and the Barabdsi-Albert scale-free network (SF) under the attack and repair strategy with detrended fluctuation analysis (DFA). The maximum degree kmax, representing the local property of the system, shows similar scaling behaviors for random graphs and scale-free networks. The fluctuations are quite random at short time scales but display strong anticorrelation at longer time scales under the same system size N and different repair probability pre. The average degree 〈k〉, revealing the statistical property of the system, exhibits completely different scaling behaviors for random graphs and scale-free networks. Random graphs display long-range power-law correlations. Scale-free networks are uncorrelated at short time scales; while anticorrelated at longer time scales and the anticorrelation becoming stronger with the increase of pre.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 70271067 and 70401020 and the Science Foundation of the Ministry of Education of China under Grant No. 03113
文摘We analyze the correlation properties of the Erd6s-Rdnyi random graph (RG) and the Barabdsi-Albert scale-free network (SF) under the attack and repair strategy with detrended fluctuation analysis (DFA). The maximum degree kmax, representing the local property of the system, shows similar scaling behaviors for random graphs and scale-free networks. The fluctuations are quite random at short time scales but display strong anticorrelation at longer time scales under the same system size N and different repair probability pre. The average degree 〈k〉, revealing the statistical property of the system, exhibits completely different scaling behaviors for random graphs and scale-free networks. Random graphs display long-range power-law correlations. Scale-free networks are uncorrelated at short time scales; while anticorrelated at longer time scales and the anticorrelation becoming stronger with the increase of pre.