According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuatio...According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuations under this new quantization are smaller than those by the traditional effective Hamiltonian method. And squeezed states can be generated if the inductance and capacity are time dependent. Meanwhile, the shortcoming of the traditional method that the electric charge and current will vanish in the long time limit is overcome.展开更多
We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
Mesoscopic damped mutual capacitance coupled double resonance circuit is quantized by the method of damped harmonic oscillator quantization. Hamiltonian is diagonalized by the method of unitary transformation. The ene...Mesoscopic damped mutual capacitance coupled double resonance circuit is quantized by the method of damped harmonic oscillator quantization. Hamiltonian is diagonalized by the method of unitary transformation. The energy spectra of this circuit are given. The quantum fluctuations of the charge and current of each loop are investigated by the method of thermo- field dynamics (TFD) in thermal excitation state,thermal squeezed vacuum state, thermal vacuum state and vacuum state. It is shown that the quantum fluctuations of the charge and current are related to not only circuit inherent parameter and coupled magnitude, but also quantum number of excitation, squeezed coefficients, squeezed angle and environmental temperature. And the quantum fluctuations increase with the increase of temperature and decay with time.展开更多
The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum f...The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.展开更多
An effective bosonic Hamiltonian describing the interaction of a mesoscopic Josephson junction with a quantized radiation field is studied. It is shown that when the field is initially in a coherent state and the junc...An effective bosonic Hamiltonian describing the interaction of a mesoscopic Josephson junction with a quantized radiation field is studied. It is shown that when the field is initially in a coherent state and the junction initially in its lowest energy level state, the state of the coupled field-mesoscopic Josephson junction system can evolve to a squeezed state. A detailed analysis about the quantum fluctuation of the coupled system is given.展开更多
The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained ...The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained by the theory of small time-delay approximation.Then,the random average method and Shapiro-Loginov algorithm were used to calculate the output amplitude ratio of the two subsystems.The simulation analysis shows that increasing the time-delay and the input signal amplitude appropriately can improve the output response of the system.Finally,the system is applied to bearing fault diagnosis and compared with the stochastic resonance system with random mass and random frequency.The experimental results show that the coupled SR system taking into account the actual effect of time-delay and couple can more effectively extract the frequency of the fault signal,and thus realizing the diagnosis of the fault signal,which has important engineering application value.展开更多
Investigations on thermal evolution of pairing-phase transition and shape-phase transition in light nuclei are made as a function of pair gap, deformation, temperature and angular momentum using a finite temperature s...Investigations on thermal evolution of pairing-phase transition and shape-phase transition in light nuclei are made as a function of pair gap, deformation, temperature and angular momentum using a finite temperature statistical approach with main emphasis to fluctuations. The occurrence of a peak structure in the specific heat predicted as signals of the pairing-phase and shape-phase transitions are reviewed and it is found that they are not actually true phase transitions and it is only an artifact of the mean field models. Since quantal number and spin fluctuations and statistical fluctuations in pair gap, deformation degrees of freedom and energy when incorporated, it wash out the pairing-phase transition and smooth out the shape-phase transition. Phase transitions due to collapse of pair gap and deformation is discussed and a clear picture of pairing-phase transition in light nuclei is presented in which pairing transition is reconciled.展开更多
In this paper, we conduct an investigation into magnon self-squeezing states in a ferromagnet. In these states, the quantum fluctuations of the spin components can be lower than the zero-point quantum fluctuations of ...In this paper, we conduct an investigation into magnon self-squeezing states in a ferromagnet. In these states, the quantum fluctuations of the spin components can be lower than the zero-point quantum fluctuations of the coherent states. Through calculating the expectation values of spin fluctuations we gain the condition of achieving magnon self-squeezing. We introduce the mean-field theory for dealing with the nonlinear interaction term of Hamiltonian of magnon system.展开更多
The crucial condition in the derivation of the Jarzynski equality (JE) from the fluctuation theorem is that the time integral of the phase space contraction factor can be exactly expressed as the entropy production ...The crucial condition in the derivation of the Jarzynski equality (JE) from the fluctuation theorem is that the time integral of the phase space contraction factor can be exactly expressed as the entropy production resulting from the heat absorbed by the system from the thermal bath. For the system violating this condition, a more general form of JE may exist. This existence is verified by three Gedanken experiments and numerical simulations, and may be confirmed by the real experiment in the nanoscale.展开更多
We have set up a new reduced model Hamiltonian for the polariton system, in which the nonlinear interaction contains the rotating term k l ( a + b + ab+) and the attractive two-mode squeezed coupling - k2 ( a ...We have set up a new reduced model Hamiltonian for the polariton system, in which the nonlinear interaction contains the rotating term k l ( a + b + ab+) and the attractive two-mode squeezed coupling - k2 ( a + b+ + ab ) . The dynamical evolution of this system has been solved and the nonclassical features relevant to the second-order and high-order squeezing have been obtained in an analytical form. For the first time, in contrast to the existing result, we have confirmed for the phonon field that the attractive two-mode squeezed interaction will not only result in the second-order and high-order squeezing in X-component with the time evolution, but also in time average. Furthermore, the phenomena of collapse and revival of inversion will occur as well in the time evolution of the average number of photon and phonon, as also in the second-order and high-order squeezing of photon field, particularly, in the high-order squeezing of phonon field.展开更多
We calculate the Casimir force at a finite cut-off A by summing the forces induced by the all fluctuation modes. We show that the Casimir force is independent of the cut-off function in the limit L∧ → ∞. There is a...We calculate the Casimir force at a finite cut-off A by summing the forces induced by the all fluctuation modes. We show that the Casimir force is independent of the cut-off function in the limit L∧ → ∞. There is a correction in the order of (L∧)^-2, when L∧ is finite and large. This correction becomes remarkable when L is comparable with the microscopic length scale ∧^-1. It has been demonstrated that the Casimir force at a finite cut-off should be defined by summing forces of all fluctuation modes, instead of the derivative of Casimir energy with respect to L where an additional derivative of the cut-off function has been introduced.展开更多
Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature. The spin-wave spectra and four sublattices magnetizations and internal...Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature. The spin-wave spectra and four sublattices magnetizations and internal energy are calculated by employing retarded Green function technique. The sublattice magnetizations at ground state are smaller than their classical values, owing to the zero-point quantum fluctuations of the spins.展开更多
For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld inva...For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld invariant. Coherent states are obtedned as the ground state of the forced system. Quantum fluctuations are calculated too. It is seen that geometric phases and quantum fluctuations are greatly affected by the non-commutativity of the space.展开更多
In this paper, the outline of the Mach 4 supersonic wind tunnel for the investigation of the supersonic internal flows in ducts was firstly described. Secondly, the location, structure and characteristics of the Mach ...In this paper, the outline of the Mach 4 supersonic wind tunnel for the investigation of the supersonic internal flows in ducts was firstly described. Secondly, the location, structure and characteristics of the Mach 2 and Mach 4 pseudo-shock waves in a square duct were investigated by color schlieren photographs and duct wall pressure fluctuation measurements. Finally, the wall shear stress distributions on the side, top and bottom walls of the square duct with the Mach 4 pseudo-shock wave were investigated qualitatively by the shear stress-sensitive liquid crystal visualization method. The side wall boundary layer separation region under the first shock is narrow near the top wall, while the side wall boundary layer separation region under the first shock is very wide near the bottom wall.展开更多
In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. He...In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked Cr Br3under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature(TC) in thick samples.It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of TC, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.展开更多
We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum flu...We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum fluctuations.This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap.In the high field regime where the quantum fluctuations are largely suppressed,we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity.Through detailed semi-classical calculations,we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.展开更多
In this work,we theoretically study hard-core bosons on a two-dimensional square optical superlattice at T = 0.First of all,we present the mean field phase diagram of this model in terms of the chemical potential μ a...In this work,we theoretically study hard-core bosons on a two-dimensional square optical superlattice at T = 0.First of all,we present the mean field phase diagram of this model in terms of the chemical potential μ and the alternating potential strength △.Besides a superfluid(SF) phase at △ = 0 and a charge density wave(CDW)phase in the large △ at half filling,we demonstrate that a supersolid(SS) phase emerges in the moderate △.Then,we focus on the μ = 0,e.g.,half filling case,using large-S semi-classical spin-wave approximation to study the SS to CDW quantum phase transition.In particular,we calculate the ground-state energy and the superfluid density at the level of1/S correction.We then compare the spin-wave results with the large scale quantum Monte Carlo(QMC) simulations using the cluster stochastic series expansion(CSSE) algorithm,and find that while the spin wave method is intuitive with clear physical pictures,the quantum critical point is quite different from that of numerical results which is believed to be accurate.We suggest that as simple as it is,this model still exhibits strong quantum fluctuations near the quantum critical point beyond the power of semiclassical spin-wave approach.展开更多
文摘According to the physical mechanism of the generation of the resistance or the electron phonon interaction, a new method is proposed to quantize the RLC electric circuit. Calculations show that the quantum fluctuations under this new quantization are smaller than those by the traditional effective Hamiltonian method. And squeezed states can be generated if the inductance and capacity are time dependent. Meanwhile, the shortcoming of the traditional method that the electric charge and current will vanish in the long time limit is overcome.
文摘We study the quantization of mesoscopic inductance coupling circuit and discuss its time evolution. Bymeans of the thermal field dynamics theory we study the quantum fluctuation of the system at finite temperature.
基金the Natural Science Foundation of Heze University ofShandong Province, China (No.XY05WL01) and the UniversityExperimental Technology Foundation of Shandong Province, China(No.S04W138)
文摘Mesoscopic damped mutual capacitance coupled double resonance circuit is quantized by the method of damped harmonic oscillator quantization. Hamiltonian is diagonalized by the method of unitary transformation. The energy spectra of this circuit are given. The quantum fluctuations of the charge and current of each loop are investigated by the method of thermo- field dynamics (TFD) in thermal excitation state,thermal squeezed vacuum state, thermal vacuum state and vacuum state. It is shown that the quantum fluctuations of the charge and current are related to not only circuit inherent parameter and coupled magnitude, but also quantum number of excitation, squeezed coefficients, squeezed angle and environmental temperature. And the quantum fluctuations increase with the increase of temperature and decay with time.
基金Supported by the Natural Science Foundation of Sichuan Education Committee under Grant No.08ZA038
文摘The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutativespace-time,a modified propagator and free energy are derived by means of functional integrals method.Moreover,quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.
文摘An effective bosonic Hamiltonian describing the interaction of a mesoscopic Josephson junction with a quantized radiation field is studied. It is shown that when the field is initially in a coherent state and the junction initially in its lowest energy level state, the state of the coupled field-mesoscopic Josephson junction system can evolve to a squeezed state. A detailed analysis about the quantum fluctuation of the coupled system is given.
基金Project(61771085)supported by the National Natural Science Foundation of ChinaProject(KJQN 201900601)supported by the Research Project of Chongqing Educational Commission,China。
文摘The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained by the theory of small time-delay approximation.Then,the random average method and Shapiro-Loginov algorithm were used to calculate the output amplitude ratio of the two subsystems.The simulation analysis shows that increasing the time-delay and the input signal amplitude appropriately can improve the output response of the system.Finally,the system is applied to bearing fault diagnosis and compared with the stochastic resonance system with random mass and random frequency.The experimental results show that the coupled SR system taking into account the actual effect of time-delay and couple can more effectively extract the frequency of the fault signal,and thus realizing the diagnosis of the fault signal,which has important engineering application value.
基金Supported by a Project(No.F.No.36-169/2008(SR)) sanctioned by University Grants Commission,New Delhi,India
文摘Investigations on thermal evolution of pairing-phase transition and shape-phase transition in light nuclei are made as a function of pair gap, deformation, temperature and angular momentum using a finite temperature statistical approach with main emphasis to fluctuations. The occurrence of a peak structure in the specific heat predicted as signals of the pairing-phase and shape-phase transitions are reviewed and it is found that they are not actually true phase transitions and it is only an artifact of the mean field models. Since quantal number and spin fluctuations and statistical fluctuations in pair gap, deformation degrees of freedom and energy when incorporated, it wash out the pairing-phase transition and smooth out the shape-phase transition. Phase transitions due to collapse of pair gap and deformation is discussed and a clear picture of pairing-phase transition in light nuclei is presented in which pairing transition is reconciled.
基金The project supported by National Natural Science Foundation of China under Grant Nos .19847004 and 10474025
文摘In this paper, we conduct an investigation into magnon self-squeezing states in a ferromagnet. In these states, the quantum fluctuations of the spin components can be lower than the zero-point quantum fluctuations of the coherent states. Through calculating the expectation values of spin fluctuations we gain the condition of achieving magnon self-squeezing. We introduce the mean-field theory for dealing with the nonlinear interaction term of Hamiltonian of magnon system.
基金We are grateful to the useful comments from Profs. C. Jarzynski, U. Seifert, M. Bier, and Dr. Gomez-Marin.
文摘The crucial condition in the derivation of the Jarzynski equality (JE) from the fluctuation theorem is that the time integral of the phase space contraction factor can be exactly expressed as the entropy production resulting from the heat absorbed by the system from the thermal bath. For the system violating this condition, a more general form of JE may exist. This existence is verified by three Gedanken experiments and numerical simulations, and may be confirmed by the real experiment in the nanoscale.
基金Supported by the Foundation of Scientific Research Education and Innovations under Grant No.11609506,Jinan University
文摘We have set up a new reduced model Hamiltonian for the polariton system, in which the nonlinear interaction contains the rotating term k l ( a + b + ab+) and the attractive two-mode squeezed coupling - k2 ( a + b+ + ab ) . The dynamical evolution of this system has been solved and the nonclassical features relevant to the second-order and high-order squeezing have been obtained in an analytical form. For the first time, in contrast to the existing result, we have confirmed for the phonon field that the attractive two-mode squeezed interaction will not only result in the second-order and high-order squeezing in X-component with the time evolution, but also in time average. Furthermore, the phenomena of collapse and revival of inversion will occur as well in the time evolution of the average number of photon and phonon, as also in the second-order and high-order squeezing of photon field, particularly, in the high-order squeezing of phonon field.
基金National Natural Science Foundation of China under Grant No.10325418
文摘We calculate the Casimir force at a finite cut-off A by summing the forces induced by the all fluctuation modes. We show that the Casimir force is independent of the cut-off function in the limit L∧ → ∞. There is a correction in the order of (L∧)^-2, when L∧ is finite and large. This correction becomes remarkable when L is comparable with the microscopic length scale ∧^-1. It has been demonstrated that the Casimir force at a finite cut-off should be defined by summing forces of all fluctuation modes, instead of the derivative of Casimir energy with respect to L where an additional derivative of the cut-off function has been introduced.
基金supported by the Natural Science Foundation of Liaoning Province under Grant No.20041021the Scientific Foundation of the Educational Department of Liaoning Province under Grant Nos.2004C006 and 20060638the Postdoctoral Foundation of Shenyang University of Technology
文摘Spin-wave theory is used to study magnetic properties of ferromagnetic double layers with a ferrimagnetic interlayer coupling at zero temperature. The spin-wave spectra and four sublattices magnetizations and internal energy are calculated by employing retarded Green function technique. The sublattice magnetizations at ground state are smaller than their classical values, owing to the zero-point quantum fluctuations of the spins.
文摘For the time-dependent harmonic oscillator and generalized harmonic oscillator with or without external forces in non-commutative space, wave functions, and geometric phases are derived using the Lewis-Riesenfeld invariant. Coherent states are obtedned as the ground state of the forced system. Quantum fluctuations are calculated too. It is seen that geometric phases and quantum fluctuations are greatly affected by the non-commutativity of the space.
文摘In this paper, the outline of the Mach 4 supersonic wind tunnel for the investigation of the supersonic internal flows in ducts was firstly described. Secondly, the location, structure and characteristics of the Mach 2 and Mach 4 pseudo-shock waves in a square duct were investigated by color schlieren photographs and duct wall pressure fluctuation measurements. Finally, the wall shear stress distributions on the side, top and bottom walls of the square duct with the Mach 4 pseudo-shock wave were investigated qualitatively by the shear stress-sensitive liquid crystal visualization method. The side wall boundary layer separation region under the first shock is narrow near the top wall, while the side wall boundary layer separation region under the first shock is very wide near the bottom wall.
基金support by the National Key R&D Program of China (2021YFA1400100)the National Natural Science Foundation of China (11827805 and 12150003)+12 种基金Shanghai Municipal Science and Technology Major Project (2019SHZDZX01)support by the National Key R&D Program of China (2018YFE0202600)Beijing Natural Science Foundation (Z200005)support from JSPS KAKENHI (19H05790, 20H00354, and 21H05233)A3 Foresight by JSPSfinancial support from the National Natural Science Foundation of China (11874115)financial support from the Ministry of Science and Technology (MOST) of China (2018YFE0202700)the National Natural Science Foundation of China (11974422)the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000)the Fundamental Research Funds for the Central Universities, Chinathe Research Funds of Renmin University of China (22XNKJ30)supported by the National Natural Science Foundation of China (12104504)the China Postdoctoral Science Foundation (2021 M693479)。
文摘In two-dimensional(2D) ferromagnets, anisotropy is essential for the magnetic ordering as dictated by the Mermin-Wagner theorem. But when competing anisotropies are present, the phase transition becomes nontrivial. Here, utilizing highly sensitive susceptometry of scanning superconducting quantum interference device microscopy, we probe the spin correlations of ABC-stacked Cr Br3under zero magnetic field. We identify a plateau feature in susceptibility above the critical temperature(TC) in thick samples.It signifies a crossover regime induced by the competition between easy-plane intralayer exchange anisotropy versus uniaxial interlayer anisotropy. The evolution of the critical behavior from the bulk to 2D shows that the competition between the anisotropies is magnified in the reduced dimension. It leads to a strongly frustrated ferromagnetic transition in the bilayer with fluctuation on the order of TC, which is distinct from both the monolayer and the bulk. Our observation demonstrates unconventional 2D critical behavior on a honeycomb lattice.
基金supported by the Innovation Program of Shanghai Municipal Education Commission(2017–01-07–00-07-E00018)the National Key R&D Program of the MOST of China(2016YFA0300203,2016YFA0300500,2016YFA0301001,and 2018YFE0103200)+6 种基金the National Natural Science Foundation of China(11874119)Shanghai Municipal Science and Technology Major Project(2019SHZDZX04)the Hong Kong Research Grants Council(17303819 and 17306520)supported by the National Natural Science Foundation of China(11875265)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(3He based neutron polarization devices)the Institute of High Energy Physicsthe Chinese Academy of Sciences。
文摘We report thermodynamic and neutron scattering measurements of the triangular-lattice quantum Ising magnet TmMgGaO_(4)in longitudinal magnetic fields.Our experiments reveal a quasi-plateau state induced by quantum fluctuations.This state exhibits an unconventional non-monotonic field and temperature dependence of the magnetic order and excitation gap.In the high field regime where the quantum fluctuations are largely suppressed,we observed a disordered state with coherent magnon-like excitations despite the suppression of the spin excitation intensity.Through detailed semi-classical calculations,we are able to understand these behaviors quantitatively from the subtle competition between quantum fluctuations and frustrated Ising interactions.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10904096,10604024,11474025the Natural Science Foundation of Beijing under Grant No.1092009
文摘In this work,we theoretically study hard-core bosons on a two-dimensional square optical superlattice at T = 0.First of all,we present the mean field phase diagram of this model in terms of the chemical potential μ and the alternating potential strength △.Besides a superfluid(SF) phase at △ = 0 and a charge density wave(CDW)phase in the large △ at half filling,we demonstrate that a supersolid(SS) phase emerges in the moderate △.Then,we focus on the μ = 0,e.g.,half filling case,using large-S semi-classical spin-wave approximation to study the SS to CDW quantum phase transition.In particular,we calculate the ground-state energy and the superfluid density at the level of1/S correction.We then compare the spin-wave results with the large scale quantum Monte Carlo(QMC) simulations using the cluster stochastic series expansion(CSSE) algorithm,and find that while the spin wave method is intuitive with clear physical pictures,the quantum critical point is quite different from that of numerical results which is believed to be accurate.We suggest that as simple as it is,this model still exhibits strong quantum fluctuations near the quantum critical point beyond the power of semiclassical spin-wave approach.