A new reaction system was designed to economically convert glucose to lactic acid environment-friendly. Hydrophobic ionic liquids were chosen as solvent that can promote the decomposition reaction of glucose, and the ...A new reaction system was designed to economically convert glucose to lactic acid environment-friendly. Hydrophobic ionic liquids were chosen as solvent that can promote the decomposition reaction of glucose, and the catalytic performance of the solid bases was evaluated. Both the reaction temperature and time can affect the yield of lactic acid. A high yield (97%) of lactic acid was achieved under the optimal reaction condition. The IH NMR spectra and HPLC-MS were used to identify the formation of the lactic acid and variations of ionic liquid. It is found that ionic-liquids have a unique solvent effect for glucose and bases. Water can be used as solvent to extract calcium lactate. This shows a great potential of hydrophobic ionic liquids in the solid bases catalyzed reaction that is limited by the weak solubility of solid bases in organic and water solution.展开更多
In emulsion system, micro-organisms survive in water phase, thus concentration of preservative in water phase directly reflects to anti-fungi efficacy. As preservative easily migrates into oil phase, it reduces preser...In emulsion system, micro-organisms survive in water phase, thus concentration of preservative in water phase directly reflects to anti-fungi efficacy. As preservative easily migrates into oil phase, it reduces preservative efficacy. A common solution is to increase preservative amount in the whole system. However this way always brings safety issues as preservative is a major allergen. Another effective but safety way is to prohibit preservative migrating into oil phase. In cosmetic research area, phenoxyethanol (PE) and p-Hydroxyacetophenone (p-HAP) pair gradually emerges to be a popular preservative candidate. Thus this new preservative system has been focused as the research object in this work. The relative contents (C) of both PE (CPE) and p-HAP (Cp-HAP) in water phase has been carefully determined. Eight commonly used oils have been further employed to check CPE and Cp-HAP in different oil-water system. The other infuence parameters such as polyols, processing parameters are also investigated. Results shows squalane, petrolatum, silicone oil and hydrogenated polyisobutene might be good oil phase candidates for formulation when using PE and p-HAP preservative system. In these oil systems, PE and p-HAP are mainly located in water phase. Besides, increasing percentage of 1, 3-butylene glycol, shortening homogenization time or adding preservatives at the end of processing under lower temperature could effectively increase effective content preservatives in water phase, either.展开更多
The extraction of thorium(IV) was investigated using two types of W/O microemulsion,one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate(NaDEHP) and the other was formed...The extraction of thorium(IV) was investigated using two types of W/O microemulsion,one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate(NaDEHP) and the other was formed by a mixture of an anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and an extractant bis(2-ethylhexyl)phosphoric acid(HDEHP) as the cosurfactant.The extraction capacities of the above two systems were higher than that of the HDEHP extraction system.High concentration of NaNO 3 showed no influence on the extraction in the NaDEHP based W/O microemulsion system,whilst reduced the extractability in the AOT-HDEHP W/O microemulsion system.The mechanism in acidic condition was demonstrated by the log-log plot method.The structure of the aggregations and the water content in the organic phase after extraction were measured by dynamic light scattering and Karl Fischer water titration,respectively.It was found that NaDEHP based W/O microemulsion broke up after extraction,while AOT-HDEHP W/O microemulsion was reserved.展开更多
基金Project(2006BAE02B05) supported by the Key Projects in the National Science and Technology Pillar Program During the 11th Five-year Plan PeriodProject(2005CB221406) supported by the National Basic Research Program of China
文摘A new reaction system was designed to economically convert glucose to lactic acid environment-friendly. Hydrophobic ionic liquids were chosen as solvent that can promote the decomposition reaction of glucose, and the catalytic performance of the solid bases was evaluated. Both the reaction temperature and time can affect the yield of lactic acid. A high yield (97%) of lactic acid was achieved under the optimal reaction condition. The IH NMR spectra and HPLC-MS were used to identify the formation of the lactic acid and variations of ionic liquid. It is found that ionic-liquids have a unique solvent effect for glucose and bases. Water can be used as solvent to extract calcium lactate. This shows a great potential of hydrophobic ionic liquids in the solid bases catalyzed reaction that is limited by the weak solubility of solid bases in organic and water solution.
文摘In emulsion system, micro-organisms survive in water phase, thus concentration of preservative in water phase directly reflects to anti-fungi efficacy. As preservative easily migrates into oil phase, it reduces preservative efficacy. A common solution is to increase preservative amount in the whole system. However this way always brings safety issues as preservative is a major allergen. Another effective but safety way is to prohibit preservative migrating into oil phase. In cosmetic research area, phenoxyethanol (PE) and p-Hydroxyacetophenone (p-HAP) pair gradually emerges to be a popular preservative candidate. Thus this new preservative system has been focused as the research object in this work. The relative contents (C) of both PE (CPE) and p-HAP (Cp-HAP) in water phase has been carefully determined. Eight commonly used oils have been further employed to check CPE and Cp-HAP in different oil-water system. The other infuence parameters such as polyols, processing parameters are also investigated. Results shows squalane, petrolatum, silicone oil and hydrogenated polyisobutene might be good oil phase candidates for formulation when using PE and p-HAP preservative system. In these oil systems, PE and p-HAP are mainly located in water phase. Besides, increasing percentage of 1, 3-butylene glycol, shortening homogenization time or adding preservatives at the end of processing under lower temperature could effectively increase effective content preservatives in water phase, either.
基金supported by National Natural Science Foundation of China(20871009)the Fundamental Research Funds for the Central Universities
文摘The extraction of thorium(IV) was investigated using two types of W/O microemulsion,one of which was formed by a surface-active saponified extractant sodium bis(2-ethylhexyl) phosphate(NaDEHP) and the other was formed by a mixture of an anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and an extractant bis(2-ethylhexyl)phosphoric acid(HDEHP) as the cosurfactant.The extraction capacities of the above two systems were higher than that of the HDEHP extraction system.High concentration of NaNO 3 showed no influence on the extraction in the NaDEHP based W/O microemulsion system,whilst reduced the extractability in the AOT-HDEHP W/O microemulsion system.The mechanism in acidic condition was demonstrated by the log-log plot method.The structure of the aggregations and the water content in the organic phase after extraction were measured by dynamic light scattering and Karl Fischer water titration,respectively.It was found that NaDEHP based W/O microemulsion broke up after extraction,while AOT-HDEHP W/O microemulsion was reserved.