With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedo...With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedout in a column with a monolithic bed of cell density of 50 cpsi with trio different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid masstransfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bedcross-section. The model predicts the overall gas-liquid mass transfer coefficient wig a relative error within +30%.展开更多
基金Supported by the State Key Development Program for Basic Research of China (2006CB202503)
文摘With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedout in a column with a monolithic bed of cell density of 50 cpsi with trio different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid masstransfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bedcross-section. The model predicts the overall gas-liquid mass transfer coefficient wig a relative error within +30%.