Axial liquid dispersion was experimentally studied in liquid-solid and gas-liquid-solid magnetically stabilized beds using the ferromagnetic catalyst of SRNA-4 as the solid phase. The effects of operating factors and ...Axial liquid dispersion was experimentally studied in liquid-solid and gas-liquid-solid magnetically stabilized beds using the ferromagnetic catalyst of SRNA-4 as the solid phase. The effects of operating factors and fluid characters, such as superficial liquid velocity, superficial gas velocity, magnetic field intensity, liquid viscosity and surface tension, on axial dispersion coefficients of liquid were investigated. The dispersion coefficients increased with the increase of superficial liquid velocity and superficial gas velocity, and decreased with the increase of liquid viscosity, liquid surface tension and magnetic field intensity. A correlation equation of Peclet number was obtained for both liquid-solid and gas-liquid-solid magnetically stabilized bed.展开更多
The accurate prediction of the droplet size distribution(DSD)in liquid–liquid turbulent dispersions is of fundamental importance in many industrial applications and it requires suitable kernels in the population bala...The accurate prediction of the droplet size distribution(DSD)in liquid–liquid turbulent dispersions is of fundamental importance in many industrial applications and it requires suitable kernels in the population balance model.When a surfactant is included in liquid–liquid dispersions,the droplet breakup behavior will change as an effect of the reduction of the interfacial tension.Moreover,also the dynamic interfacial tension may be different with respect to the static,due to the fact that the surfactant may be easily desorbed from the droplet surface,generating additional disruptive stresses.In this work,the performance of five breakup kernels from the literature is assessed,to investigate their ability to predict the time evolution of the DSD and of the mean Sauter diameter,when different surfactants are employed.Simulations are performed with the Quadrature Method of Moments for the solution of the population balance model coupled with the two-fluid model implemented in the compressible Two Phase Euler Foam solver of the open-source computational fluid dynamics(CFD)code Open FOAM v.2.2.x.The time evolution of the mean Sauter diameter predicted by these kernels is validated against experimental data for six test cases referring to a stirred tank with different types of surfactants(Tween 20 and PVA 88%)at different concentrations operating under different stirrer rates.Our results show that for the dispersion containing Tween 20 additional stress is generated,the multifractal breakup kernel properly predicts the DSD evolution,whereas two other kernels predict too fast breakup of droplets covered by adsorbed PVA.Kernels derived originally for bubbles completely fail.展开更多
An analysis of the solute dispersion in the liquid flowing through a pipe by means of Aris–Barton's ‘method of moments', under the joint effect of some finite yield stress and irreversible absorption into th...An analysis of the solute dispersion in the liquid flowing through a pipe by means of Aris–Barton's ‘method of moments', under the joint effect of some finite yield stress and irreversible absorption into the wall is presented in this paper. The liquid is considered as a three-layer liquid where the center region is Casson liquid surrounded by Newtonian liquid layer. A significant change from previous modelling exercises in the study of hydrodynamic dispersion, different molecular diffusivity has been considered for the different region yet to be constant. For all time period, finite difference implicit scheme has been adopted to solve the integral moment equation arising from the unsteady convective diffusion equation. The purpose of the study is to find the dependency of solute transport coefficients on absorption parameter, yield stress, viscosity ratio, peripheral layer variation and in addition with various diffusivity coefficients in different liquid layers. This kind of study may be useful for understanding the dispersion process in the blood flow analysis.展开更多
Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed pha...Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed phase turbulence,is the key problem in the Eulerian-Eulerian simulation of practical dispersed multiphase flows.Although different models were developed and used,the experimental validation shows that they cannot always give satisfactory prediction results.In this paper the present author give a detailed review of the unified second-order moment (USM),k-k p and nonlinear k-k p two-phase turbulence models,proposed by him.The derivation and closure of these models are described in detail and the experimental validation and application of these models are extensively discussed.展开更多
基金Supported by the National Natural Science Foundation of China (No.20206023) and SIN0PEC (No.X504029).
文摘Axial liquid dispersion was experimentally studied in liquid-solid and gas-liquid-solid magnetically stabilized beds using the ferromagnetic catalyst of SRNA-4 as the solid phase. The effects of operating factors and fluid characters, such as superficial liquid velocity, superficial gas velocity, magnetic field intensity, liquid viscosity and surface tension, on axial dispersion coefficients of liquid were investigated. The dispersion coefficients increased with the increase of superficial liquid velocity and superficial gas velocity, and decreased with the increase of liquid viscosity, liquid surface tension and magnetic field intensity. A correlation equation of Peclet number was obtained for both liquid-solid and gas-liquid-solid magnetically stabilized bed.
文摘The accurate prediction of the droplet size distribution(DSD)in liquid–liquid turbulent dispersions is of fundamental importance in many industrial applications and it requires suitable kernels in the population balance model.When a surfactant is included in liquid–liquid dispersions,the droplet breakup behavior will change as an effect of the reduction of the interfacial tension.Moreover,also the dynamic interfacial tension may be different with respect to the static,due to the fact that the surfactant may be easily desorbed from the droplet surface,generating additional disruptive stresses.In this work,the performance of five breakup kernels from the literature is assessed,to investigate their ability to predict the time evolution of the DSD and of the mean Sauter diameter,when different surfactants are employed.Simulations are performed with the Quadrature Method of Moments for the solution of the population balance model coupled with the two-fluid model implemented in the compressible Two Phase Euler Foam solver of the open-source computational fluid dynamics(CFD)code Open FOAM v.2.2.x.The time evolution of the mean Sauter diameter predicted by these kernels is validated against experimental data for six test cases referring to a stirred tank with different types of surfactants(Tween 20 and PVA 88%)at different concentrations operating under different stirrer rates.Our results show that for the dispersion containing Tween 20 additional stress is generated,the multifractal breakup kernel properly predicts the DSD evolution,whereas two other kernels predict too fast breakup of droplets covered by adsorbed PVA.Kernels derived originally for bubbles completely fail.
文摘An analysis of the solute dispersion in the liquid flowing through a pipe by means of Aris–Barton's ‘method of moments', under the joint effect of some finite yield stress and irreversible absorption into the wall is presented in this paper. The liquid is considered as a three-layer liquid where the center region is Casson liquid surrounded by Newtonian liquid layer. A significant change from previous modelling exercises in the study of hydrodynamic dispersion, different molecular diffusivity has been considered for the different region yet to be constant. For all time period, finite difference implicit scheme has been adopted to solve the integral moment equation arising from the unsteady convective diffusion equation. The purpose of the study is to find the dependency of solute transport coefficients on absorption parameter, yield stress, viscosity ratio, peripheral layer variation and in addition with various diffusivity coefficients in different liquid layers. This kind of study may be useful for understanding the dispersion process in the blood flow analysis.
基金supported by the National Key Project of Fundamental Research of China (Grant No.G1999-0222-07-08)the National Natural Science Foundation of China (Grant Nos.50736006 and 50606026)the Foundation of State Key Laboratory of Engines,Tianjin University (Grant No.K2010-07)
文摘Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed phase turbulence,is the key problem in the Eulerian-Eulerian simulation of practical dispersed multiphase flows.Although different models were developed and used,the experimental validation shows that they cannot always give satisfactory prediction results.In this paper the present author give a detailed review of the unified second-order moment (USM),k-k p and nonlinear k-k p two-phase turbulence models,proposed by him.The derivation and closure of these models are described in detail and the experimental validation and application of these models are extensively discussed.