By using the Ti/Cu contact reaction couples, the dissolution behavior of Ti and Cu in the eutectic reaction process was investigated under different conditions. The results show that the formation of eutectic liquid p...By using the Ti/Cu contact reaction couples, the dissolution behavior of Ti and Cu in the eutectic reaction process was investigated under different conditions. The results show that the formation of eutectic liquid phase has a directional property, i.e. the eutectic liquid phase forms first at the Cu side and then spreads along the depth direction of Cu. The width of the eutectic liquid zone when Ti is placed on Cu is wider than that when Ti is placed under Cu. The shape of the upside liquid zone is wave-like. This phenomenon indicates that the formation process and spreading behavior in the upside are different from those in the underside, and there exists void effect in the Cu side of underside liquid zone, this will result in the delaying phenomenon of the contact reaction between Ti and Cu, and distinctly different shapes of the both liquid zones. The formation process of Ti/Cu eutectic liquid zone is similar to that of the traditional solid-state diffusion layer, and the relationship between the width of liquid zone and holding time obeys a square root law.展开更多
基金Project(JKLSDT 02 01) supported by the Open Fund of the Jiangsu Key Laboratory of Ship Designing Technology
文摘By using the Ti/Cu contact reaction couples, the dissolution behavior of Ti and Cu in the eutectic reaction process was investigated under different conditions. The results show that the formation of eutectic liquid phase has a directional property, i.e. the eutectic liquid phase forms first at the Cu side and then spreads along the depth direction of Cu. The width of the eutectic liquid zone when Ti is placed on Cu is wider than that when Ti is placed under Cu. The shape of the upside liquid zone is wave-like. This phenomenon indicates that the formation process and spreading behavior in the upside are different from those in the underside, and there exists void effect in the Cu side of underside liquid zone, this will result in the delaying phenomenon of the contact reaction between Ti and Cu, and distinctly different shapes of the both liquid zones. The formation process of Ti/Cu eutectic liquid zone is similar to that of the traditional solid-state diffusion layer, and the relationship between the width of liquid zone and holding time obeys a square root law.