The Large-eddy simulation (LES) with two-way coupling is used to study bubble-liquid two-phase confined multiple jets discharged into a 2D channel.The LES results reveal the large-eddy vortex structures of both liquid...The Large-eddy simulation (LES) with two-way coupling is used to study bubble-liquid two-phase confined multiple jets discharged into a 2D channel.The LES results reveal the large-eddy vortex structures of both liquid flow and bubble motion,the shear-generated and bubble-induced liquid turbulence,and indicate much stronger bubble fluctuation than that of the liquid,the enhancement of liquid turbulence by bubbles.Both shear and bubble-liquid interaction are important for the liquid turbulence generation in the case studied.展开更多
Liquid metal free surface flows (films, jets and droplets) are considered as diverter/ limiter system and first wall in fusion reactor, but the knowledge Of liquid metal free surface under a non-uniform magnetic fie...Liquid metal free surface flows (films, jets and droplets) are considered as diverter/ limiter system and first wall in fusion reactor, but the knowledge Of liquid metal free surface under a non-uniform magnetic field is very limited. In this article, the stability of a jet flow under a gradient magnetic field is investigated, and its MHD effects are the top concern. Based on numerical simulation and experimental results, a simplified model is developed to analyze the MHD effects of the jet flow and to explain the reason why it can keep stable under a strong non-uniform magnetic field.展开更多
A fast vortex method is presented for the simulation of fluid flows inside two-dimensional channels,The first channel studied is formed by two parallel walls simulating the entrance length of a developing flow.The sec...A fast vortex method is presented for the simulation of fluid flows inside two-dimensional channels,The first channel studied is formed by two parallel walls simulating the entrance length of a developing flow.The second channel is similar to the first one but with an injection of a secondary fluid through a slot on one of its walls,In both cases,results are presented for flows at low Reynolds numbers and for flows at a high Reynolds number The numerical method used is based on the Random Vortex Method and on the Vortex-In-Cell Algorithm.Physical analyses of the numerical results are also presented.mostly in application to film cooling.展开更多
A theoretical study was conducted to characterize hydraulic jump of laminar circular liquid jets. The objective of this research was to determine the jump location in a simple explicit form. The effects of many factor...A theoretical study was conducted to characterize hydraulic jump of laminar circular liquid jets. The objective of this research was to determine the jump location in a simple explicit form. The effects of many factors were investigated including nozzle diameter, jet exit pressure, nozzle-to-plate spacing, jet velocity and Reynolds number. It was found that the theoretical data collapsed well over the range of jet Reynolds number 500 Re 1800 with previous data.展开更多
基金Supported by the National Natural Science Foundation of China (No. 19872039).
文摘The Large-eddy simulation (LES) with two-way coupling is used to study bubble-liquid two-phase confined multiple jets discharged into a 2D channel.The LES results reveal the large-eddy vortex structures of both liquid flow and bubble motion,the shear-generated and bubble-induced liquid turbulence,and indicate much stronger bubble fluctuation than that of the liquid,the enhancement of liquid turbulence by bubbles.Both shear and bubble-liquid interaction are important for the liquid turbulence generation in the case studied.
基金Supported by National Natural Science Foundation of China(B10275019)
文摘Liquid metal free surface flows (films, jets and droplets) are considered as diverter/ limiter system and first wall in fusion reactor, but the knowledge Of liquid metal free surface under a non-uniform magnetic field is very limited. In this article, the stability of a jet flow under a gradient magnetic field is investigated, and its MHD effects are the top concern. Based on numerical simulation and experimental results, a simplified model is developed to analyze the MHD effects of the jet flow and to explain the reason why it can keep stable under a strong non-uniform magnetic field.
文摘A fast vortex method is presented for the simulation of fluid flows inside two-dimensional channels,The first channel studied is formed by two parallel walls simulating the entrance length of a developing flow.The second channel is similar to the first one but with an injection of a secondary fluid through a slot on one of its walls,In both cases,results are presented for flows at low Reynolds numbers and for flows at a high Reynolds number The numerical method used is based on the Random Vortex Method and on the Vortex-In-Cell Algorithm.Physical analyses of the numerical results are also presented.mostly in application to film cooling.
文摘A theoretical study was conducted to characterize hydraulic jump of laminar circular liquid jets. The objective of this research was to determine the jump location in a simple explicit form. The effects of many factors were investigated including nozzle diameter, jet exit pressure, nozzle-to-plate spacing, jet velocity and Reynolds number. It was found that the theoretical data collapsed well over the range of jet Reynolds number 500 Re 1800 with previous data.