The vacuum-free vibration liquid phase(VLP) diffusion-bonding of SiC_p/ZL101A composites was investigated. The effects of vibration on the interface structure, the phase transformation and the tensile strength of bond...The vacuum-free vibration liquid phase(VLP) diffusion-bonding of SiC_p/ZL101A composites was investigated. The effects of vibration on the interface structure, the phase transformation and the tensile strength of bonded joints were examined. Experimental results show that the oxide film on the surface of the composites is a key factor affecting the tensile strength of boned joints. The distribution of the oxide layers at the interface changes from a continuous line to a discontinuous one during vibration. The tensile strength of the VLP diffusion-bonded joints increases with the vibration time, and is up to the maximum of 172MPa when the vibration time is 30s. The phase structure of the bond region changes from the Zn-Al-Cu hyper-eutectic (η+(β+η)+(β+η+ε)) phases to Al-rich Al-base solid solution (α-Al) with increasing the vibration time.展开更多
This paper deals with the application of electrorheological fluid (ERF) in shock absorbers. Such shock absorbers (ERF shock absorbers) whose damping force is controlled Continuously and promptly through electric singn...This paper deals with the application of electrorheological fluid (ERF) in shock absorbers. Such shock absorbers (ERF shock absorbers) whose damping force is controlled Continuously and promptly through electric singnals, can be used in many kinds of mechanical equipment for vibration control. Typical structures of ERF shock absorbers are described and requirements for the ERF employed in shock absorbers are discussed. A new kind of shock absorber and its control system are presented and test results of the ERF shock absorber are given.展开更多
The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are...The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.展开更多
文摘The vacuum-free vibration liquid phase(VLP) diffusion-bonding of SiC_p/ZL101A composites was investigated. The effects of vibration on the interface structure, the phase transformation and the tensile strength of bonded joints were examined. Experimental results show that the oxide film on the surface of the composites is a key factor affecting the tensile strength of boned joints. The distribution of the oxide layers at the interface changes from a continuous line to a discontinuous one during vibration. The tensile strength of the VLP diffusion-bonded joints increases with the vibration time, and is up to the maximum of 172MPa when the vibration time is 30s. The phase structure of the bond region changes from the Zn-Al-Cu hyper-eutectic (η+(β+η)+(β+η+ε)) phases to Al-rich Al-base solid solution (α-Al) with increasing the vibration time.
文摘This paper deals with the application of electrorheological fluid (ERF) in shock absorbers. Such shock absorbers (ERF shock absorbers) whose damping force is controlled Continuously and promptly through electric singnals, can be used in many kinds of mechanical equipment for vibration control. Typical structures of ERF shock absorbers are described and requirements for the ERF employed in shock absorbers are discussed. A new kind of shock absorber and its control system are presented and test results of the ERF shock absorber are given.
基金Project supported by the National Basic Research Program (973) of China (No.2006CB705400)the National Natural Science Foundation of China (No.50575200)
文摘The characteristics of the fluidic flowmeter,which is a combination of impinged concave wall and bistable fluid amplifier,is investigated by experimental studies and numerical simulations. The numerical approaches are utilized to examine the time dependent flow field and pressure field inside the proposed flowmeter. The effect of varying structural parameters on flow characteristics of the proposed fluidic flowmeter is investigated by computational simulations for the optimization. Both the simulation and experimental results disclose that the hydrodynamic vibration,with the same intensity,frequency and 180° phase shift,occurs at axisymmetric points in the feedback channel of the fluidic flowmeter. Using the structural combination of impinged concave wall and bistable fluid amplifier and differential signal processing technique,a novel fluidic flowmeter with excellent immunity and improved sensibility is developed.