Nanoscale spatial heterogeneity in ionic liquids is formed by the aggregation of cationic tail groups. The electrostatic interactions between polar groups and the collective van der Waals interactions between nonpolar...Nanoscale spatial heterogeneity in ionic liquids is formed by the aggregation of cationic tail groups. The electrostatic interactions between polar groups and the collective van der Waals interactions between nonpolar tail groups both contribute to the formation of tail domains, but the degrees of their contributions were unknown. In this work, by applying a strong external electric field to effectively overpower the electrostatic interactions between polar groups, we have determined that the tail aggregation is majorly attributed to the electrostatic interactions and the van der Waals interactions only have minor influence on the spatial heterogeneity phenomenon of ionic liquids.展开更多
Static dielectric constant is a key parameter to estimate the electro-viscous effect which plays important roles in the flow and convective heat transfer of fluids with ions in microfluidic devices such as micro react...Static dielectric constant is a key parameter to estimate the electro-viscous effect which plays important roles in the flow and convective heat transfer of fluids with ions in microfluidic devices such as micro reactors and heat exchangers.A group contribution method based on 27 groups is developed for the correlation of static dielectric constant of ionic liquids in this paper.The ionic liquids considered include imidazolium,pyridinium,pyrrolidinium,alkylammonium,alkylsulfonium,morpholinium and piperidinium cations and various anions.The data collected cover the temperature ranges of 278.15-343.15 K and static dielectric constant ranges of 9.4-85.6.The results of the method show a satisfactory agreement with the literature data with an average absolute relative deviation of 7.41%,which is generally of the same order of the experimental data accuracy.The method proposed in this paper provides a simple but reliable approach for the prediction of static dielectric constant of ionic liquids at different temperatures.展开更多
Poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT), a kind of liquid-crystalline (LC) molecule, has high molecular weight, negative charge and a semi-rigid structure. The aqueous solution of PBDT show...Poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT), a kind of liquid-crystalline (LC) molecule, has high molecular weight, negative charge and a semi-rigid structure. The aqueous solution of PBDT shows nematic liquid crystalline state above a critical PBDT concentration, CLC*, of 2 wt%-3wt%. Different from the flexible polyelectrolyte, PBDT shows a variety of self-assembling structures in aqueous solution with and without salt due to the semi-rigid nature and highly charged property. In addition, the hydrogels with ordered structure are developed by polymerizing a cationic monomer N-[3-(N,N-dimethylamino) propyl] acrylamide methyl chloride quarternary (DMAPAA-Q) in the presence of a small amount of PBDT below the CLC*. During the polymerization of cationic monomer, the polycations form a complex with semi-rigid PBDT through electrostatic interaction; these complexes self-assemble into ordered structures that are frozen in the hydrogel. Several different structures, including the anisotropic, dual network-like structure, and cylindrically symmetric structure, with various length scales from micrometer to millimeter, are observed. The hydrogels with ordered liquid crystalline assemblies and particular optical properties should promise applications in many fields, such as in bionics, tissue engineering, and mechano-optical sensors.展开更多
基金Supported by the Hundred Talent Program of the Chinese Academy of Sciencesthe General Program of the National Natural Science Foundation of China under Grant No. 10974208
文摘Nanoscale spatial heterogeneity in ionic liquids is formed by the aggregation of cationic tail groups. The electrostatic interactions between polar groups and the collective van der Waals interactions between nonpolar tail groups both contribute to the formation of tail domains, but the degrees of their contributions were unknown. In this work, by applying a strong external electric field to effectively overpower the electrostatic interactions between polar groups, we have determined that the tail aggregation is majorly attributed to the electrostatic interactions and the van der Waals interactions only have minor influence on the spatial heterogeneity phenomenon of ionic liquids.
基金Supported by the National Natural Science Foundation of China(21176206)the Project of Zhejiang Key Scientific and Technological Innovation Team(2010R50017)
文摘Static dielectric constant is a key parameter to estimate the electro-viscous effect which plays important roles in the flow and convective heat transfer of fluids with ions in microfluidic devices such as micro reactors and heat exchangers.A group contribution method based on 27 groups is developed for the correlation of static dielectric constant of ionic liquids in this paper.The ionic liquids considered include imidazolium,pyridinium,pyrrolidinium,alkylammonium,alkylsulfonium,morpholinium and piperidinium cations and various anions.The data collected cover the temperature ranges of 278.15-343.15 K and static dielectric constant ranges of 9.4-85.6.The results of the method show a satisfactory agreement with the literature data with an average absolute relative deviation of 7.41%,which is generally of the same order of the experimental data accuracy.The method proposed in this paper provides a simple but reliable approach for the prediction of static dielectric constant of ionic liquids at different temperatures.
基金supported by a Grant-in-Aid for the Specially Promoted Research (18002002) from the Ministry of Education, Science, Sports and Culture of Japan
文摘Poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT), a kind of liquid-crystalline (LC) molecule, has high molecular weight, negative charge and a semi-rigid structure. The aqueous solution of PBDT shows nematic liquid crystalline state above a critical PBDT concentration, CLC*, of 2 wt%-3wt%. Different from the flexible polyelectrolyte, PBDT shows a variety of self-assembling structures in aqueous solution with and without salt due to the semi-rigid nature and highly charged property. In addition, the hydrogels with ordered structure are developed by polymerizing a cationic monomer N-[3-(N,N-dimethylamino) propyl] acrylamide methyl chloride quarternary (DMAPAA-Q) in the presence of a small amount of PBDT below the CLC*. During the polymerization of cationic monomer, the polycations form a complex with semi-rigid PBDT through electrostatic interaction; these complexes self-assemble into ordered structures that are frozen in the hydrogel. Several different structures, including the anisotropic, dual network-like structure, and cylindrically symmetric structure, with various length scales from micrometer to millimeter, are observed. The hydrogels with ordered liquid crystalline assemblies and particular optical properties should promise applications in many fields, such as in bionics, tissue engineering, and mechano-optical sensors.