Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety an...Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management(BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.展开更多
Metallic nanowire arrays (NWAs) possess wide application prospects due to their unique property, and the tailoring of NWAs' structure and morphology is of importance since it would significantly influence the per- ...Metallic nanowire arrays (NWAs) possess wide application prospects due to their unique property, and the tailoring of NWAs' structure and morphology is of importance since it would significantly influence the per- formance of NWAs. In the present work, the morphology and structure evolution of the NWAs prepared by the newly developed die nanoimprinting technique has been investigated in detail. It was found that increasing pro- cessing temperature, time and pressure could increase the length of the nanowires and change the NWAs' morphol- ogy from monodispersed form to aggregated form. Increasing processing time and temperature within the supercooled liquid region would promote crystallization, while increasing processing pressure could suppress the crystallization. This work provided important insights into the structure and morphology evolution, and therefore, the tailoring of metallic NWAs prepared by die nanoimprinting through adjusting the process parameters.展开更多
基金Supported by National Natural Science Foundation of China(No.51376019)
文摘Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management(BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.
基金This work was supported by the National Natural Science Foundation of China (51271095 and 51101090), and PhD Program Foundation of Ministry of Education of China (20120002110038).
文摘Metallic nanowire arrays (NWAs) possess wide application prospects due to their unique property, and the tailoring of NWAs' structure and morphology is of importance since it would significantly influence the per- formance of NWAs. In the present work, the morphology and structure evolution of the NWAs prepared by the newly developed die nanoimprinting technique has been investigated in detail. It was found that increasing pro- cessing temperature, time and pressure could increase the length of the nanowires and change the NWAs' morphol- ogy from monodispersed form to aggregated form. Increasing processing time and temperature within the supercooled liquid region would promote crystallization, while increasing processing pressure could suppress the crystallization. This work provided important insights into the structure and morphology evolution, and therefore, the tailoring of metallic NWAs prepared by die nanoimprinting through adjusting the process parameters.