Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice i...Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.展开更多
Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power gen...Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.展开更多
Culture ofArthrospiraplatensis (Spirulinaplatens) in human urine was investigated to get valuable biomass. NO3-N was the proper N source, in comparison with other N source, including urea, NH4-N and NO2-N. As a resu...Culture ofArthrospiraplatensis (Spirulinaplatens) in human urine was investigated to get valuable biomass. NO3-N was the proper N source, in comparison with other N source, including urea, NH4-N and NO2-N. As a result, aerobic nitrification of human urine was performed, with above 93.6% nitrification percentage finally achieved with total-N (TN) load of 46.52 mg/(L.d), in which Arthrospira platensis was successfully grown. The main compositions of the obtained biomass are close to those in Zarrouk medium. Thus, it is possible to culture Arthrospiraplatensis in nitrified human urine for food production within bioregenerative life support systems (BLSSs).展开更多
A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the propose...A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.展开更多
In China, Qanats are found solely in the Xinjiang Uygur Autonomous Region, this system has greatly contributed since long ago to local livelihood, especially agriculture. Today, there are around 600 Qanats in Xinjiang...In China, Qanats are found solely in the Xinjiang Uygur Autonomous Region, this system has greatly contributed since long ago to local livelihood, especially agriculture. Today, there are around 600 Qanats in Xinjiang, located especially in Turpan and Hami pefectures. Uygur people are the main users of the Qanat, they are not only using the techniques of construction and maintenance but they are also integrating Qanat into their culture. Today, Qanats in China are facing more and more crises with the local developmental impacts from enlarging farmland, groundwater over-extraction, seasonal water shortages, costly management, and conflicts of the interest, etc.. According to some studies, the number of Qanats in Xinjiang was reduced from 1,784 in 1950 to 600 today, which are equivalent to a decline of 23 Qanats per eventually come to end in the coming decades if we do not have year. Consequently, many experts are concerned that Qanats will effective efforts for their maintenance. It is a fact that Qanat is still able to adapt to the local environment, the local livelihood and against climate change, it cannot be converted to other hydraulic system in the arid environment of Xinjiang so far, but it is also challenged by current developments, especially rising amount of water consumption and costly maintenance. This paper aims to discuss the currently situation of Qanats in Xinjiang of China and their protection and sustainable use in a context of current development of industry, urbanization and local environmental change.展开更多
This paper makes a study of some technical and engineering aspects by using C2 + hydrocarbon separation facility at Guangdong Dapeng liquefied natural gas (GDLNG) terminal. In the C2+ hydrocarbon extraction proces...This paper makes a study of some technical and engineering aspects by using C2 + hydrocarbon separation facility at Guangdong Dapeng liquefied natural gas (GDLNG) terminal. In the C2+ hydrocarbon extraction process, the cold energy contained in LNG will be utilized. In order to ensure the optimum operating conditions of the temlinal and C2 + hydrocarbon extraction facility by optimizing the current operating processes of the terminal, the C2 + hydrocarbon extraction facility construction plan is proposed. We conducted numerous calculations and simulations using such specific analysis software as PRO II 〈 version 7.0 〉. Additionally available flow data are used to verify the cyclic send-out rates from the terminal, thus establishing the current and future projected load factors. This study is intended to make sure that GDLNG can continue to supply gas via the pipeline system safely without interruptions and most significantly solves the effects of flow fluctuations at the terminal gasification send-out facility on the hydrocarbons extraction, ensuring optimum pipeline operations and ensuring safe and effective means for such C2+ hydrocarbons extraction process as well. At the same time, the terminal is also in the optimum operation condition. This is very significant to the terminal safety operation and the energy conservation and emission reduction.展开更多
文摘Two schemes(scheme Ⅰ and scheme Ⅱ)for designing a district cooling system(DCS)utilizing cold energy of liquefied natural gas(LNG)are presented.In scheme Ⅰ,LNG cold energy is used to produce ice,and then ice is transported to the central cooling plant of the DCS.In scheme Ⅱ,return water from the DCS is directly chilled by LNG cold energy,and the chilled water is then sent back to the central plant.The heat transportation loss is the main negative impact in the DCS and is emphatically analyzed when evaluating the efficiency of each scheme.The results show that the DCS utilizing LNG cold energy is feasible and valuable.The cooling supply distance of scheme Ⅱ is limited within 13 km while scheme Ⅰ has no distance limit.When the distance is between 6 and 13 km,scheme Ⅱ is more practical and effective.Contrarily,scheme Ⅰ has a better economic performance when the distance is shorter than 6 km or longer than 13 km.
基金the Science and Technology Foundation of Shaanxi Province (No.2002K08-G9).
文摘Two novel thermal cycles based on Brayton cycle and Rankine cycle are proposed, respectively, which integrate the recovery of low-level waste heat and Liquefied Nature Gas (LNG) cold energy utilization for power generation. Cascade utilization of energy is realized in the two thermal cycles, where low-level waste heat,low-temperature exergy and pressure exergy of LNG are utilized efficiently through the system synthesis. The simulations are carried out using the commercial Aspen Plus 10.2, and the results are analyzed. Compared with the conventional Brayton cycle and Rankine cycle, the two novel cycles bring 60.94% and 60% in exergy efficiency, respectively and 53.08% and 52.31% in thermal efficiency, respectively.
基金Project (No. 10376032) supported by the Natural Science Association Foundation of China (NSAF)
文摘Culture ofArthrospiraplatensis (Spirulinaplatens) in human urine was investigated to get valuable biomass. NO3-N was the proper N source, in comparison with other N source, including urea, NH4-N and NO2-N. As a result, aerobic nitrification of human urine was performed, with above 93.6% nitrification percentage finally achieved with total-N (TN) load of 46.52 mg/(L.d), in which Arthrospira platensis was successfully grown. The main compositions of the obtained biomass are close to those in Zarrouk medium. Thus, it is possible to culture Arthrospiraplatensis in nitrified human urine for food production within bioregenerative life support systems (BLSSs).
基金Supported by the National Natural Science Foundation of China(20876056,20536020)the PhD Program Fund from Ministry of Education of China(20100172110016)
文摘A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.
文摘In China, Qanats are found solely in the Xinjiang Uygur Autonomous Region, this system has greatly contributed since long ago to local livelihood, especially agriculture. Today, there are around 600 Qanats in Xinjiang, located especially in Turpan and Hami pefectures. Uygur people are the main users of the Qanat, they are not only using the techniques of construction and maintenance but they are also integrating Qanat into their culture. Today, Qanats in China are facing more and more crises with the local developmental impacts from enlarging farmland, groundwater over-extraction, seasonal water shortages, costly management, and conflicts of the interest, etc.. According to some studies, the number of Qanats in Xinjiang was reduced from 1,784 in 1950 to 600 today, which are equivalent to a decline of 23 Qanats per eventually come to end in the coming decades if we do not have year. Consequently, many experts are concerned that Qanats will effective efforts for their maintenance. It is a fact that Qanat is still able to adapt to the local environment, the local livelihood and against climate change, it cannot be converted to other hydraulic system in the arid environment of Xinjiang so far, but it is also challenged by current developments, especially rising amount of water consumption and costly maintenance. This paper aims to discuss the currently situation of Qanats in Xinjiang of China and their protection and sustainable use in a context of current development of industry, urbanization and local environmental change.
文摘This paper makes a study of some technical and engineering aspects by using C2 + hydrocarbon separation facility at Guangdong Dapeng liquefied natural gas (GDLNG) terminal. In the C2+ hydrocarbon extraction process, the cold energy contained in LNG will be utilized. In order to ensure the optimum operating conditions of the temlinal and C2 + hydrocarbon extraction facility by optimizing the current operating processes of the terminal, the C2 + hydrocarbon extraction facility construction plan is proposed. We conducted numerous calculations and simulations using such specific analysis software as PRO II 〈 version 7.0 〉. Additionally available flow data are used to verify the cyclic send-out rates from the terminal, thus establishing the current and future projected load factors. This study is intended to make sure that GDLNG can continue to supply gas via the pipeline system safely without interruptions and most significantly solves the effects of flow fluctuations at the terminal gasification send-out facility on the hydrocarbons extraction, ensuring optimum pipeline operations and ensuring safe and effective means for such C2+ hydrocarbons extraction process as well. At the same time, the terminal is also in the optimum operation condition. This is very significant to the terminal safety operation and the energy conservation and emission reduction.