The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the mi...The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the microstructure and mechanical properties are inhomogeneous in direct forged samples.The microstructure of the wall is coarser than that of the base,and the mechanical properties are lower and some defects are detected at the wheel corner.Using compound loading,the microstructure and mechanical properties of the wall are improved evidently.With increasing feeding amount,the microstructure and mechanical properties become more homogeneous.The defects disappear when the feeding amount is 4 mm.The forged wheel hubs could obtain fine and homogeneous microstructure with grain size of 20-30 μm,tensile strength of 355 MPa and elongation of 10% when the feeding amount is 10 mm.The microstructure and mechanical properties of liquid forged workpieces could be controlled and homogenized using compound loading.展开更多
A series of bifunctional catalysts composed of a component for higher alcohol synthesis (Cu-CoMn oxides, CCM) and an acidic zeolite (SAPO-34, ZSM-5, Y, MCM-41) were prepared for production of liquid hydrocarbon di...A series of bifunctional catalysts composed of a component for higher alcohol synthesis (Cu-CoMn oxides, CCM) and an acidic zeolite (SAPO-34, ZSM-5, Y, MCM-41) were prepared for production of liquid hydrocarbon directly from a bio-syngas through a one-stage pro-cess. The effects of zeolite type, zeolite content, Si/Al ratio and preparation method on catalyst texture and its reaction performance were investigated. Higher selectivities and yields of liquid products were obtained by using bifunctional catalysts. The yields of liquid hydrocarbons decreased in the order CCM-ZSM-5〉CCM-SAPO-34〉CCM-Y〉CCM-MCM-41. CCM-ZSM-5 (20wt%, Si/Al=100) prepared by coprecipitation method displayed the optimal catalytic performance with the highest CO conversion (76%) and yield of liquid products (30%). The catalysts were characterized by N2 adsorption/desorption, NH3-TPD, XRD, and H2-TPR analysis. The results showed that higher speci c surface areas and pore volumes of bifunctional catalysts were achieved by adding zeolites into CuCoMn precursors. Medium pore dimension and moderate acidity in CCM-ZSM-5 were observed, which proba-bly resulted in its excellent reaction performance. Additionally, a higher number of weaker acid sites (weak and/or medium acid sites) were formed by increasing ZSM-5 content in CCM-ZSM-5 or decreasing Si/Al ratio in ZSM-5. It was also seen that metal dispersion was higher and reducibility of metal ions was easier on the CCM-ZSM-5 catalyst prepared by coprecipitation. The higher alcohols-to-hydrocarbon process provides a promising route to hydrocarbon fuels via higher alcohols from syngas or biobased feedstocks.展开更多
Pure water has been characterized for nearly a century, by its dissociation into hydronium (H3O)1+ and hydroxide (HO)1- ions. As a chemical equilibrium reaction, the equilibrium constant, known as the ion product...Pure water has been characterized for nearly a century, by its dissociation into hydronium (H3O)1+ and hydroxide (HO)1- ions. As a chemical equilibrium reaction, the equilibrium constant, known as the ion product or the product of the equilibrium concentration of the two ion species, has been extensively measured by chemists over the liquid water temperature and pressure range. The experimental data have been nonlinear least-squares fitted to chemical thermodynamic-based equilibrium equations, which have been accepted as the industrial standard for 35 years. In this study, a new and statistical-physics-based water ion product equation is presented, in which, the ions are the positively charged protons and the negatively charged proton-holes or prohols. Nonlinear least squares fits of our equation to the experimental data in the 0-100℃ pure liquid water range, give a factor of two better precision than the 35-year industrial standard.展开更多
In this study, the undrained behaviour of silt under low stress level is studied. An effective preparation method for built-in silt samples in the triaxial test was firstly developed. By triaxial testing of samples at...In this study, the undrained behaviour of silt under low stress level is studied. An effective preparation method for built-in silt samples in the triaxial test was firstly developed. By triaxial testing of samples at low confining pressures it was found that silt easily loses stability and liquefies. Loose silt may show temporary liquefaction under static loading, and develop full liquefaction under cyclic loading. The most important factors influencing the silt behaviour are porosity, confining pressure, consolidation state, cyclic loading level and number of cycles. The maximum obtainable shear stress is primarily a function of the confining pressure and the internal frictional angle. The actual structure of the silt material is the key factor in controlling its behaviour.展开更多
The kinetics of non-catalyzed decompositions of xylose and its decomposition product furfural in high temperature liquid water (HTLW) was studied for temperature from 180 to 220℃ and under pressure of 10MPa. The ma...The kinetics of non-catalyzed decompositions of xylose and its decomposition product furfural in high temperature liquid water (HTLW) was studied for temperature from 180 to 220℃ and under pressure of 10MPa. The main products of xylose decomposition were furfural and formic acid, and furfural further degraded to formic acid under HTLW condition. With the assumption of first order kinetics e.quation, the evaluated activation energy of xylose and furfural decomposition was 123.27kJ·mol^-1 and 58.84kJ·mol^-1, respectively.展开更多
AIM: To find and identify specific nuclear matrix proteins associated with proliferation and differentiation of carcinoma cells, which will be potential markers for cancer diagnosis and targets in cancer therapy. MET...AIM: To find and identify specific nuclear matrix proteins associated with proliferation and differentiation of carcinoma cells, which will be potential markers for cancer diagnosis and targets in cancer therapy. METHODS: Nuclear matrix proteins were selectively extracted from MGcS0-3 cells treated with or without hexamethylamine bisacetamide (HMBA), and subjected to 2-D gel electrophoresis. The resulted protein patterns were analyzed by Melanie software. Spots of nuclear matrix proteins differentially expressed were excised and subjected to in situ digestion with trypsin. Peptide masses were obtained by matrix-assisted laser-desorption/ ionization time of flight mass spectrometry (MALDI-TOFMS) analysis and submitted for database searching using Mascot tool. RESULTS: The MGc80-3 cells were induced into differentiation by HMBA. There were 22 protein spots which changed remarkably in the nuclear matrix, from differentiation of MGcS0-3 cells compared to control. Eleven of which were identified. Seven proteinsactin, prohibitin, porin 31HL, heterogeneous nuclear dbonucleoprotein A2/B1, vimentin, ATP synthase, and heat shock protein 60 were downregulated, whereas three proteins - heat shock protein gp96, heat shock protein 90-beta, and valosin-containing protein were upregulated, and the oxygen-regulated protein was only found in the differentiated MGc80-3 cells. CONCLUSION: The induced differentiation of carcinoma cells is accompanied by the changes of nuclear matrix proteins. Further characterization of those proteins will show the mechanism of cellular proliferation and differentiation, as well as cancer differentiation.展开更多
In this paper we present a strategy for tuning the crystal morphology of pharmaceutical compounds by the appropriate choice of solvent via an optimization model. A three-stage approach involving a pre-design stage, a ...In this paper we present a strategy for tuning the crystal morphology of pharmaceutical compounds by the appropriate choice of solvent via an optimization model. A three-stage approach involving a pre-design stage, a product design stage and a post-design experimental verification stage is presented. The pre-design stage addresses the tormulation of the property constraint tor crystal morphology. This involves crystallization experiments aria development of property models and constraints for morphology. In the design stage various property requirements for the solvent along with crystal morphology are considered and the product design problem is formulated as a mixed integer nonlinear programming model.The design stage provides an optimal solvent/list of candidate solvents. Similar to the pre-design stage, in the post design experimental verification stage, the morphology of the crystals (precipitated from the designed solvent) is verified through crystallization experiments followed by product characterization via scanni'ng electron microscopy, powder X-ray diffraction imaging and Fourier transform spectra analysis.展开更多
The effect of Si content on the microstructures and growth kinetics of intermetallic compounds(IMCs)formed during the initial interfacial reaction(<10 s)between solid steel and liquid aluminum was investigated by a...The effect of Si content on the microstructures and growth kinetics of intermetallic compounds(IMCs)formed during the initial interfacial reaction(<10 s)between solid steel and liquid aluminum was investigated by a thermophysical simulation method.The influence of Si addition on interfacial mechanical properties was revealed by a high-frequency induction brazing.The results showed that IMCs layers mainly consisted ofη-Fe_(2)Al_(5)andθ-Fe_(4)Al_(13).The addition of Si reduced the thickness of the IMCs layer.The growth of theηphase was governed by the diffusion process when adding 2 wt.%Si to the aluminum melt.When 5 wt.%or 8 wt.%Si was added to aluminum,the growth was governed by both the diffusion process and interfacial reaction,and ternary phaseτ1/τ9-(Al,Si)_(5)Fe_(3)was formed in theηphase.The apparent activation energies of theηphase decreased gradually with increasing Si content.The joint with pure aluminum metal had the highest tensile strength and impact energy.展开更多
According to the existing problems of liquefaction models of saturated sand that were put forward under dynamic action,on the basis of Handin-Drnevich model,a new calculating model of the dynamic constitutive relation...According to the existing problems of liquefaction models of saturated sand that were put forward under dynamic action,on the basis of Handin-Drnevich model,a new calculating model of the dynamic constitutive relation of saturated sand was put forward.The model was based on the basic hypothesis of instantaneous limit balance according to the basic principle that the stress estate is the destroyed condition was not overstepped.The calculated method of increment nonlinear was referenced and combined with the excellence of the model of distributed particles.The process of vibrating liquefaction of saturated sand was divided into some areas.And the phenomena of shearing dilatation and unloading shrink of saturated sand were considered.On above basic a new calculating constitutive relation model was proposed.There are a few parameters in the model.The physical means of the parameters are very evident and quantized.They could be obtained from the dynamic triaxial test in door.The model was contrasted and validated with the results of the dynamic triaxial test in door.The comparison of the results of the dynamic triaxial test in door and the calculating results of the model indicates that all sorts of phenomenon appearing in the process of liquefaction of saturated sand could be more perfectly reflected by the model.Especially at the initial stage of development of pore water pressure and strain of saturated sand,the results of the dynamic triaxial test in door are consistent with the calculated results of the model very much.But there is some difference between the results at the anaphase of development of pore water pressure and strain.On the path of stress,the calculating and experimenting ultimate state surfaces are almost identical.展开更多
Biohydrogen production from synthetic waste, SW (model organic fraction of municipal solid waste) co-digested with liquid dairy manure (M) was tested in batch reactions to assess the effect of temperature and mixi...Biohydrogen production from synthetic waste, SW (model organic fraction of municipal solid waste) co-digested with liquid dairy manure (M) was tested in batch reactions to assess the effect of temperature and mixing ratio of the substrates. A 5 × 2 factorial design experiment was conducted. Synthetic waste: manure mixtures of 1:1, 2:1, 3:1, 1:0, 0:1 (volatile solids, VS, basis) were tested at 37 (T37) and 55 ℃ (T55) using thirty 1 L laboratory scale digesters. Total VS of each mixture was 50 g/L except SW:M 0:I treatment, where total VS was 27.4 g/L. Gas samples were taken daily to determine hydrogen production, and slurry samples taken before and after experimentation, were analyzed for volatile fatty acid (VFA) concentration, volatile solid (VS) degradation, ammonium nitrogen (NH4+-N) and pH. Hydrogen production (mL/g-VS fed) showed a significant two-factor interaction between incubation temperature and SW:M ratio (P 〈 0.001). Maximum production of 15.8 mL/g-VS (fed) was achieved in SW:M ratio of 3:1 at 55 ℃. Generally, hydrogen productions at thermophilic temperature (T55) were significantly higher than at mesophilic (T37) temperature for all treatments (P 〈 0.001) except for SW:M 1:0 and SW:M 0:1 treatments (P 〉 0.05). This study indicates that hydrogen production from co-digestion of synthetic waste and manure is dependent on incubation temperature and relative contribution of wastes in the mixture.展开更多
In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodolo...In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodology in kinetics research of CO2 capture by ionic liquids: reliable thermodynamic models, interfacial transport rate description and accurate experimental flux. The obtaining of accurate experimental flux requires reliable experimental kinetics data and the effective transport area in the CO2 capture process by ionic liquids. Research advances in the three key scientific problems are reviewed systematically and further work is analyzed. Finally, perspectives of non-equilibrium thermodynamic research of the kinetics of CO2 capture by ionic liquids are proposed.展开更多
Objective: To investigate the morphological chan ges of the roof of the subacromial bursa (SAB) and its involvement extent after rotator cuff tear. Methods: In the experimental group,the roof of SAB was obtaine d from...Objective: To investigate the morphological chan ges of the roof of the subacromial bursa (SAB) and its involvement extent after rotator cuff tear. Methods: In the experimental group,the roof of SAB was obtaine d from 30 cases of rotator cuff tear both at the tear site and a site 2.5 - 3.0 cm distal to the tear site during rotator cuff repair. In the control gr oup,the roof of SAB was obtained from the exposed site of recurrently dislocate d shoulder or fractured humeral shaft of 8 cases. The specimens were stained wit h hematoxylin and eosin and observed under a transmission electron microscope. T he cell number was quantitated through counting the blue-stained nucleus in SAB with a computer image analysis system.Results: The number of cells increased significantly in the roo f of SAB in the experimental group compared with that of the control group. Howe ver,no difference of the bursal reaction was found among the type of rotator cu ff tear,the bursa thickness and the presence of fluid in the bursa. The great m ajority of cells were type B cells observed under the transmission electron micr oscope.Conclusions: The increase in cell number in the roof of SAB in the experimental group is a reactive increase rather than an inflammatory proces s and the involvement of SAB is not limited in extent. The change of the roof of SAB is a secondary reaction to the rotator cuff tear.展开更多
Dynamic nuclear polarization (DNP) has become a very important hyperpolarization method because it can dramatically increase the sensitivity of nuclear magnetic resonance (NMR) of various molecules. Liquid-state D...Dynamic nuclear polarization (DNP) has become a very important hyperpolarization method because it can dramatically increase the sensitivity of nuclear magnetic resonance (NMR) of various molecules. Liquid-state DNP based on Overhauser effect is capable of directly enhancing polarization of all kinds of nuclei in the system. The combination of simultaneous Overhauser multi-nuclei enhancements with the multi-nuclei parallel acquisitions provides a variety of important applications in both MR spectroscopy (MRS) and image (MRI). Here we present two simple illustrative examples for simultaneously enhanced multi-nuclear spectra and images to demonstrate the principle and superiority. We have observed very large simultaneous DNP enhancements for different nuclei, such as XH and 23Na, 1H and 31p, 19F and 31p, especially for the first time to report sodium ion enhancement in liquid. We have also obtained the simultaneous images of 19H and 31p, 19F and 31p at low field by solution-state DNP for the first time.展开更多
Previous reports about the growth of large graphene single crystals on polycrystalline metal substrates usually adopted the strategy of suppressing the nucleation by lowering the concentration of the feedstock, which ...Previous reports about the growth of large graphene single crystals on polycrystalline metal substrates usually adopted the strategy of suppressing the nucleation by lowering the concentration of the feedstock, which greatly limited the rate of the nucleation and the sequent growth. The emerging liquid metal catalyst possesses the characteristic of quasi-atomically smooth surface with high diffusion rate. In principle, it should be a naturally ideal platform for the lowdensity nucleation and the fast growth of graphene. However,the rapid growth of large graphene single crystals on liquid metals has not received the due attention. In this paper, we firstly purposed the insight into the rapid growth of large graphene single crystals on liquid metals. We obtained the millimeter-size graphene single crystals on liquid Cu. The rich free-electrons in liquid Cu accelerate the nucleation, and the isotropic smooth surface greatly suppresses the nucleation.Moreover, the fast mass-transfer of carbon atoms due to the excellent fluidity of liquid Cu promotes the fast growth with a rate up to 79 μm s^-1. We hope the research on the growth speed of graphene on liquid Cu can enrich the recognition of the growth behavior of two-dimensional(2 D) materials on the liquid metal. We also believe that the liquid metal strategy for the rapid growth of graphene can be extended to various 2 D materials and thus promote their future applications in the photonics and electronics.展开更多
In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper...In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper, thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3-3.5 min to burn out in FB, but in thermogravimetric analyzer, the time is 20-25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures. Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures, there was interference among the components during fluidized bed combustion.展开更多
The false vacuum decay in field theory from a coherently oscillating initial state is studied for φ6 potential. An oscillating bubble solution is obtained. The instantaneous bubble nucleation rate is calculated.
This paper focuses on the variability in entrainment rate in individual cumulus clouds using the entrainment rate estimated on the scale of 5 m in 186 shallow cumulus clouds from eight aircraft flights, using in situ ...This paper focuses on the variability in entrainment rate in individual cumulus clouds using the entrainment rate estimated on the scale of 5 m in 186 shallow cumulus clouds from eight aircraft flights, using in situ observations from the RACORO field campaign (the routine atmospheric radiation measurement aerial facility clouds with low optical water depths optical radiative observations) over the atmospheric radiation measurement Southern Great Plains site, USA. The result shows that the mean entrainment rate of all the 186 clouds systematically decreases from the cloud edge to the cloud center. Further analysis of the fluctuation of entrainment rate shows that the probability density function of entrainment rate in each flight can be fitted by the lognormal, gamma, or Weibull distributions virtually equally well, with the Weibull dis- tribution being the best. The parameter "standard devia- tion" in the lognormal distribution is weakly negatively correlated, and the other parameters in the three distribu- tions are positively correlated with relative humidity in the entrained dry air and dilution effect, respectively. Entrainment rate is negatively correlated with droplet concentration, droplet size, and liquid water content, but positively correlated with relative dispersion. The effect of entrainment rate on the spectral shape of cloud droplet size distribution is examined and linked to the systems theory on the cloud droplet size distribution.展开更多
基金Projects (50774026, 50875059) supported by the National Natural Science Foundation of ChinaProject (20070420023) supported by the China Postdoctoral Science FoundationProject (2008AA03A239) supported by the National High-tech Research and Development Program of China
文摘The homogenization on microstructure and mechanical properties of 2A50 aluminum alloy prepared by liquid forging was investigated.Wheel hubs were produced using direct and compound loading.The results show that the microstructure and mechanical properties are inhomogeneous in direct forged samples.The microstructure of the wall is coarser than that of the base,and the mechanical properties are lower and some defects are detected at the wheel corner.Using compound loading,the microstructure and mechanical properties of the wall are improved evidently.With increasing feeding amount,the microstructure and mechanical properties become more homogeneous.The defects disappear when the feeding amount is 4 mm.The forged wheel hubs could obtain fine and homogeneous microstructure with grain size of 20-30 μm,tensile strength of 355 MPa and elongation of 10% when the feeding amount is 10 mm.The microstructure and mechanical properties of liquid forged workpieces could be controlled and homogenized using compound loading.
文摘A series of bifunctional catalysts composed of a component for higher alcohol synthesis (Cu-CoMn oxides, CCM) and an acidic zeolite (SAPO-34, ZSM-5, Y, MCM-41) were prepared for production of liquid hydrocarbon directly from a bio-syngas through a one-stage pro-cess. The effects of zeolite type, zeolite content, Si/Al ratio and preparation method on catalyst texture and its reaction performance were investigated. Higher selectivities and yields of liquid products were obtained by using bifunctional catalysts. The yields of liquid hydrocarbons decreased in the order CCM-ZSM-5〉CCM-SAPO-34〉CCM-Y〉CCM-MCM-41. CCM-ZSM-5 (20wt%, Si/Al=100) prepared by coprecipitation method displayed the optimal catalytic performance with the highest CO conversion (76%) and yield of liquid products (30%). The catalysts were characterized by N2 adsorption/desorption, NH3-TPD, XRD, and H2-TPR analysis. The results showed that higher speci c surface areas and pore volumes of bifunctional catalysts were achieved by adding zeolites into CuCoMn precursors. Medium pore dimension and moderate acidity in CCM-ZSM-5 were observed, which proba-bly resulted in its excellent reaction performance. Additionally, a higher number of weaker acid sites (weak and/or medium acid sites) were formed by increasing ZSM-5 content in CCM-ZSM-5 or decreasing Si/Al ratio in ZSM-5. It was also seen that metal dispersion was higher and reducibility of metal ions was easier on the CCM-ZSM-5 catalyst prepared by coprecipitation. The higher alcohols-to-hydrocarbon process provides a promising route to hydrocarbon fuels via higher alcohols from syngas or biobased feedstocks.
文摘Pure water has been characterized for nearly a century, by its dissociation into hydronium (H3O)1+ and hydroxide (HO)1- ions. As a chemical equilibrium reaction, the equilibrium constant, known as the ion product or the product of the equilibrium concentration of the two ion species, has been extensively measured by chemists over the liquid water temperature and pressure range. The experimental data have been nonlinear least-squares fitted to chemical thermodynamic-based equilibrium equations, which have been accepted as the industrial standard for 35 years. In this study, a new and statistical-physics-based water ion product equation is presented, in which, the ions are the positively charged protons and the negatively charged proton-holes or prohols. Nonlinear least squares fits of our equation to the experimental data in the 0-100℃ pure liquid water range, give a factor of two better precision than the 35-year industrial standard.
基金This research is partly supported by the National Natural Science Foundation(No.50009002)863(No.2001AA616020)projects.
文摘In this study, the undrained behaviour of silt under low stress level is studied. An effective preparation method for built-in silt samples in the triaxial test was firstly developed. By triaxial testing of samples at low confining pressures it was found that silt easily loses stability and liquefies. Loose silt may show temporary liquefaction under static loading, and develop full liquefaction under cyclic loading. The most important factors influencing the silt behaviour are porosity, confining pressure, consolidation state, cyclic loading level and number of cycles. The maximum obtainable shear stress is primarily a function of the confining pressure and the internal frictional angle. The actual structure of the silt material is the key factor in controlling its behaviour.
基金Supported by the National Natural Science Foundation of China (No.20476089) and the Project of the Ministry of Science and Technology of China (No.2004CCA05500).
文摘The kinetics of non-catalyzed decompositions of xylose and its decomposition product furfural in high temperature liquid water (HTLW) was studied for temperature from 180 to 220℃ and under pressure of 10MPa. The main products of xylose decomposition were furfural and formic acid, and furfural further degraded to formic acid under HTLW condition. With the assumption of first order kinetics e.quation, the evaluated activation energy of xylose and furfural decomposition was 123.27kJ·mol^-1 and 58.84kJ·mol^-1, respectively.
基金Supported by the National Natural Science Foundation of China,No. 30470877the Natural Science Foundation of Fujian Province, No. C0310003
文摘AIM: To find and identify specific nuclear matrix proteins associated with proliferation and differentiation of carcinoma cells, which will be potential markers for cancer diagnosis and targets in cancer therapy. METHODS: Nuclear matrix proteins were selectively extracted from MGcS0-3 cells treated with or without hexamethylamine bisacetamide (HMBA), and subjected to 2-D gel electrophoresis. The resulted protein patterns were analyzed by Melanie software. Spots of nuclear matrix proteins differentially expressed were excised and subjected to in situ digestion with trypsin. Peptide masses were obtained by matrix-assisted laser-desorption/ ionization time of flight mass spectrometry (MALDI-TOFMS) analysis and submitted for database searching using Mascot tool. RESULTS: The MGc80-3 cells were induced into differentiation by HMBA. There were 22 protein spots which changed remarkably in the nuclear matrix, from differentiation of MGcS0-3 cells compared to control. Eleven of which were identified. Seven proteinsactin, prohibitin, porin 31HL, heterogeneous nuclear dbonucleoprotein A2/B1, vimentin, ATP synthase, and heat shock protein 60 were downregulated, whereas three proteins - heat shock protein gp96, heat shock protein 90-beta, and valosin-containing protein were upregulated, and the oxygen-regulated protein was only found in the differentiated MGc80-3 cells. CONCLUSION: The induced differentiation of carcinoma cells is accompanied by the changes of nuclear matrix proteins. Further characterization of those proteins will show the mechanism of cellular proliferation and differentiation, as well as cancer differentiation.
文摘In this paper we present a strategy for tuning the crystal morphology of pharmaceutical compounds by the appropriate choice of solvent via an optimization model. A three-stage approach involving a pre-design stage, a product design stage and a post-design experimental verification stage is presented. The pre-design stage addresses the tormulation of the property constraint tor crystal morphology. This involves crystallization experiments aria development of property models and constraints for morphology. In the design stage various property requirements for the solvent along with crystal morphology are considered and the product design problem is formulated as a mixed integer nonlinear programming model.The design stage provides an optimal solvent/list of candidate solvents. Similar to the pre-design stage, in the post design experimental verification stage, the morphology of the crystals (precipitated from the designed solvent) is verified through crystallization experiments followed by product characterization via scanni'ng electron microscopy, powder X-ray diffraction imaging and Fourier transform spectra analysis.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51875037)the Beijing Municipal Natural Science Foundation,China(No.3192021)the Fundamental Research Funds for the Central Universities,China(No.FRF-GF-18-004B).
文摘The effect of Si content on the microstructures and growth kinetics of intermetallic compounds(IMCs)formed during the initial interfacial reaction(<10 s)between solid steel and liquid aluminum was investigated by a thermophysical simulation method.The influence of Si addition on interfacial mechanical properties was revealed by a high-frequency induction brazing.The results showed that IMCs layers mainly consisted ofη-Fe_(2)Al_(5)andθ-Fe_(4)Al_(13).The addition of Si reduced the thickness of the IMCs layer.The growth of theηphase was governed by the diffusion process when adding 2 wt.%Si to the aluminum melt.When 5 wt.%or 8 wt.%Si was added to aluminum,the growth was governed by both the diffusion process and interfacial reaction,and ternary phaseτ1/τ9-(Al,Si)_(5)Fe_(3)was formed in theηphase.The apparent activation energies of theηphase decreased gradually with increasing Si content.The joint with pure aluminum metal had the highest tensile strength and impact energy.
基金Project(59979001) supported by the National Natural Science Foundation of China
文摘According to the existing problems of liquefaction models of saturated sand that were put forward under dynamic action,on the basis of Handin-Drnevich model,a new calculating model of the dynamic constitutive relation of saturated sand was put forward.The model was based on the basic hypothesis of instantaneous limit balance according to the basic principle that the stress estate is the destroyed condition was not overstepped.The calculated method of increment nonlinear was referenced and combined with the excellence of the model of distributed particles.The process of vibrating liquefaction of saturated sand was divided into some areas.And the phenomena of shearing dilatation and unloading shrink of saturated sand were considered.On above basic a new calculating constitutive relation model was proposed.There are a few parameters in the model.The physical means of the parameters are very evident and quantized.They could be obtained from the dynamic triaxial test in door.The model was contrasted and validated with the results of the dynamic triaxial test in door.The comparison of the results of the dynamic triaxial test in door and the calculating results of the model indicates that all sorts of phenomenon appearing in the process of liquefaction of saturated sand could be more perfectly reflected by the model.Especially at the initial stage of development of pore water pressure and strain of saturated sand,the results of the dynamic triaxial test in door are consistent with the calculated results of the model very much.But there is some difference between the results at the anaphase of development of pore water pressure and strain.On the path of stress,the calculating and experimenting ultimate state surfaces are almost identical.
文摘Biohydrogen production from synthetic waste, SW (model organic fraction of municipal solid waste) co-digested with liquid dairy manure (M) was tested in batch reactions to assess the effect of temperature and mixing ratio of the substrates. A 5 × 2 factorial design experiment was conducted. Synthetic waste: manure mixtures of 1:1, 2:1, 3:1, 1:0, 0:1 (volatile solids, VS, basis) were tested at 37 (T37) and 55 ℃ (T55) using thirty 1 L laboratory scale digesters. Total VS of each mixture was 50 g/L except SW:M 0:I treatment, where total VS was 27.4 g/L. Gas samples were taken daily to determine hydrogen production, and slurry samples taken before and after experimentation, were analyzed for volatile fatty acid (VFA) concentration, volatile solid (VS) degradation, ammonium nitrogen (NH4+-N) and pH. Hydrogen production (mL/g-VS fed) showed a significant two-factor interaction between incubation temperature and SW:M ratio (P 〈 0.001). Maximum production of 15.8 mL/g-VS (fed) was achieved in SW:M ratio of 3:1 at 55 ℃. Generally, hydrogen productions at thermophilic temperature (T55) were significantly higher than at mesophilic (T37) temperature for all treatments (P 〈 0.001) except for SW:M 1:0 and SW:M 0:1 treatments (P 〉 0.05). This study indicates that hydrogen production from co-digestion of synthetic waste and manure is dependent on incubation temperature and relative contribution of wastes in the mixture.
基金supported by the National Basic Research Program of China (2009CB226103, 2009CB219902)Swedish Research Councilgrateful to the support by the 363rd Session of Xiangshan Science Conferences, "Scientific Issues of Energy Conservation Mechanism for Waste-decreasing Process"
文摘In this paper, the methodology of non-equilibrium thermodynamics is introduced for kinetics research of CO2 capture by ionic liquids, and the following three key scientific problems are proposed to apply the methodology in kinetics research of CO2 capture by ionic liquids: reliable thermodynamic models, interfacial transport rate description and accurate experimental flux. The obtaining of accurate experimental flux requires reliable experimental kinetics data and the effective transport area in the CO2 capture process by ionic liquids. Research advances in the three key scientific problems are reviewed systematically and further work is analyzed. Finally, perspectives of non-equilibrium thermodynamic research of the kinetics of CO2 capture by ionic liquids are proposed.
文摘Objective: To investigate the morphological chan ges of the roof of the subacromial bursa (SAB) and its involvement extent after rotator cuff tear. Methods: In the experimental group,the roof of SAB was obtaine d from 30 cases of rotator cuff tear both at the tear site and a site 2.5 - 3.0 cm distal to the tear site during rotator cuff repair. In the control gr oup,the roof of SAB was obtained from the exposed site of recurrently dislocate d shoulder or fractured humeral shaft of 8 cases. The specimens were stained wit h hematoxylin and eosin and observed under a transmission electron microscope. T he cell number was quantitated through counting the blue-stained nucleus in SAB with a computer image analysis system.Results: The number of cells increased significantly in the roo f of SAB in the experimental group compared with that of the control group. Howe ver,no difference of the bursal reaction was found among the type of rotator cu ff tear,the bursa thickness and the presence of fluid in the bursa. The great m ajority of cells were type B cells observed under the transmission electron micr oscope.Conclusions: The increase in cell number in the roof of SAB in the experimental group is a reactive increase rather than an inflammatory proces s and the involvement of SAB is not limited in extent. The change of the roof of SAB is a secondary reaction to the rotator cuff tear.
基金supported by the Chinese Academy of Sciences(ZDYZ2010-2)the Ministry of Science and Technology of China (2011YQ120035)the National Natural Science Foundation of China (11405264,11274347,21221064,11575287)
文摘Dynamic nuclear polarization (DNP) has become a very important hyperpolarization method because it can dramatically increase the sensitivity of nuclear magnetic resonance (NMR) of various molecules. Liquid-state DNP based on Overhauser effect is capable of directly enhancing polarization of all kinds of nuclei in the system. The combination of simultaneous Overhauser multi-nuclei enhancements with the multi-nuclei parallel acquisitions provides a variety of important applications in both MR spectroscopy (MRS) and image (MRI). Here we present two simple illustrative examples for simultaneously enhanced multi-nuclear spectra and images to demonstrate the principle and superiority. We have observed very large simultaneous DNP enhancements for different nuclei, such as XH and 23Na, 1H and 31p, 19F and 31p, especially for the first time to report sodium ion enhancement in liquid. We have also obtained the simultaneous images of 19H and 31p, 19F and 31p at low field by solution-state DNP for the first time.
基金supported by the National Natural Science Foundation of China(21673161)the Sino-German Center for Research Promotion(1400)
文摘Previous reports about the growth of large graphene single crystals on polycrystalline metal substrates usually adopted the strategy of suppressing the nucleation by lowering the concentration of the feedstock, which greatly limited the rate of the nucleation and the sequent growth. The emerging liquid metal catalyst possesses the characteristic of quasi-atomically smooth surface with high diffusion rate. In principle, it should be a naturally ideal platform for the lowdensity nucleation and the fast growth of graphene. However,the rapid growth of large graphene single crystals on liquid metals has not received the due attention. In this paper, we firstly purposed the insight into the rapid growth of large graphene single crystals on liquid metals. We obtained the millimeter-size graphene single crystals on liquid Cu. The rich free-electrons in liquid Cu accelerate the nucleation, and the isotropic smooth surface greatly suppresses the nucleation.Moreover, the fast mass-transfer of carbon atoms due to the excellent fluidity of liquid Cu promotes the fast growth with a rate up to 79 μm s^-1. We hope the research on the growth speed of graphene on liquid Cu can enrich the recognition of the growth behavior of two-dimensional(2 D) materials on the liquid metal. We also believe that the liquid metal strategy for the rapid growth of graphene can be extended to various 2 D materials and thus promote their future applications in the photonics and electronics.
文摘In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper, thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3-3.5 min to burn out in FB, but in thermogravimetric analyzer, the time is 20-25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures. Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures, there was interference among the components during fluidized bed combustion.
文摘The false vacuum decay in field theory from a coherently oscillating initial state is studied for φ6 potential. An oscillating bubble solution is obtained. The instantaneous bubble nucleation rate is calculated.
基金supported by the National Natural Science Foundation of China(41305120,91337215)the Research Foundation for Environmental Protection of Jiangsu Province(2013042)+9 种基金the Natural Science Foundation of Jiangsu Province,China(BK20130988)the Specialized Research Foundation for the Doctoral Program of Higher Education(20133228120002)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(13KJB170014)China Meteorological Administration Special Public Welfare Research Foundation(GYHY201406007)the Open Funding from State Key Laboratory of Severe Weather(2013LASW-B06)the Open Funding from Key Laboratory of Meteorological Disaster of Ministry of Education,China(KLME1305)the Qing Lan Projecta Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe US Department of Energy’s(DOE)Earth System Modeling(ESM)program via the FASTER project(www.bnl.gov/faster)Atmospheric System Research(ASR)Program
文摘This paper focuses on the variability in entrainment rate in individual cumulus clouds using the entrainment rate estimated on the scale of 5 m in 186 shallow cumulus clouds from eight aircraft flights, using in situ observations from the RACORO field campaign (the routine atmospheric radiation measurement aerial facility clouds with low optical water depths optical radiative observations) over the atmospheric radiation measurement Southern Great Plains site, USA. The result shows that the mean entrainment rate of all the 186 clouds systematically decreases from the cloud edge to the cloud center. Further analysis of the fluctuation of entrainment rate shows that the probability density function of entrainment rate in each flight can be fitted by the lognormal, gamma, or Weibull distributions virtually equally well, with the Weibull dis- tribution being the best. The parameter "standard devia- tion" in the lognormal distribution is weakly negatively correlated, and the other parameters in the three distribu- tions are positively correlated with relative humidity in the entrained dry air and dilution effect, respectively. Entrainment rate is negatively correlated with droplet concentration, droplet size, and liquid water content, but positively correlated with relative dispersion. The effect of entrainment rate on the spectral shape of cloud droplet size distribution is examined and linked to the systems theory on the cloud droplet size distribution.