Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [ba...Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [banim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.展开更多
CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.He...CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.Herein,we for the first time report a novel anion-functionalized ZU-16-Co(TIFSIX-3-Co,TIFSIX=hexafluorotitanate(TiF62−),3=pyrazine),which exhibits one-dimensional pore channels decorated by abundant F atoms,for efficient CO2 capture at a concentration around 400–10,000 ppm.Among its isostructural MFSIX-3(M=Si,Ti,Ge)family materials,ZU-16-Co with fine-tuned pore size of 3.62Åexhibits the highest CO2 uptake at 0.01 bar(10,000 ppm)and 1 bar(2.63 and 2.87 mmol g−,respectively).The high CO2 capture ability of ZU-16-Co originates from the fine-tuned pore dimensions with strong F⋯C=O host-guest interactions and relatively large pore volumes coming from its longer coordinated Ti-F-Co distance(3.9Å)in c direction.The excellent carbon trapping performance was further verified by dynamic breakthrough tests for CO2/N2(1/99 and 15/85)and CO2/CH4(50/50)mixtures.The adsorption and separation performances,resulting from the fine-tuned pore system with periodic arrays of exposed functionalities,demonstrate that ultramicroporous ZU-16-Co can be a promising adsorbent for low-concentration carbon capture.展开更多
基金Supported by the National Natural Science Foundation of China (20776065), the Natural Science Foundation of Jiangsu Province (BK2008023), and the National Found for Fostering Talents of Basic Science 00630425).
文摘Permeabilities and selectivities of gases such as carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen (N2) and methane (CH4) in six imidazolium-based ionic liquids ([emim][BF4], [bmim][BF4], [bmim][PF6], [banim][BF4], [bmim][Tf2N] and [emim][CF3SO3]) supported on polyethersulfone microfiltration membranes are investigated in a single gas feed system using nitrogen as the environment and reference component at temperature from 25 to 45℃ and pressure of N2 from 100 to 400 kPa. It is found that SO2 has the highest permeability in the tested supported ionic liquid membranes, being an order of magnitude higher than that of CO2, and about 2 to 3 orders of magnitude larger than those of N2 and CH4. The observed selectivity of SO2 over the two ordinary gas components is also striking. It is shown experimentally that the dissolution and transport of gas components in the supported ionic liquid membranes, as well as the nature of ionic liquids play important roles in the gas permeation. A nonlinear increase of permeation rate with temperature and operation pressure is also observed for all sample gases. By considering the factors that influence the permeabilities and selectivities of CO2 and SO2, it is expected to develop an optimal supported ionic liquid membrane technology for the isolation of acidic gases in the near future.
基金the National Natural Science Foundation of China(21938011,U1862110,21890764 and21725603)the National Program for Support of Top-notch Young Professionals(H.X.)。
文摘CO2 capture,especially under low-pressure range,is of significance to maintain long-duration human operation in confined spaces and decrease the CO2 corrosion and freezing effect for the liquefaction of natural gas.Herein,we for the first time report a novel anion-functionalized ZU-16-Co(TIFSIX-3-Co,TIFSIX=hexafluorotitanate(TiF62−),3=pyrazine),which exhibits one-dimensional pore channels decorated by abundant F atoms,for efficient CO2 capture at a concentration around 400–10,000 ppm.Among its isostructural MFSIX-3(M=Si,Ti,Ge)family materials,ZU-16-Co with fine-tuned pore size of 3.62Åexhibits the highest CO2 uptake at 0.01 bar(10,000 ppm)and 1 bar(2.63 and 2.87 mmol g−,respectively).The high CO2 capture ability of ZU-16-Co originates from the fine-tuned pore dimensions with strong F⋯C=O host-guest interactions and relatively large pore volumes coming from its longer coordinated Ti-F-Co distance(3.9Å)in c direction.The excellent carbon trapping performance was further verified by dynamic breakthrough tests for CO2/N2(1/99 and 15/85)and CO2/CH4(50/50)mixtures.The adsorption and separation performances,resulting from the fine-tuned pore system with periodic arrays of exposed functionalities,demonstrate that ultramicroporous ZU-16-Co can be a promising adsorbent for low-concentration carbon capture.