Due to their negligible volatility,reasonable thermal stability,strong dissolubility,wide liquid range and tunability of structure and property,ionic liquids have been regarded as emerging candidate reagents for CO2 c...Due to their negligible volatility,reasonable thermal stability,strong dissolubility,wide liquid range and tunability of structure and property,ionic liquids have been regarded as emerging candidate reagents for CO2 cap-ture from industries gases.In this review,the research progresses in CO2 capture using conventional ionic liquids,functionalized ionic liquids,supported ionic-liquids membranes,polymerized ionic liquids and mixtures of ionic liquids with some molecular solvents were investigated and reviewed.Discussion of relevant research fields was presented and the future developments were suggested.展开更多
The composition, characteristics and preparation of ionic liquids are presented. The factors influencing the stability of gasoline and the significance of improving gasoline stability are discussed. A novel way to imp...The composition, characteristics and preparation of ionic liquids are presented. The factors influencing the stability of gasoline and the significance of improving gasoline stability are discussed. A novel way to improve the stability of gasoline by using ionic liquid catalyst is developed. The contents of olefin, basic nitrogen and sulfur in gasoline are determined and the optimal experimental conditions for improving gasoline stability are established.The ionic liquid catalyst, which is environmentally friendly, can reduce the olefin content in gasoline, and such process is noted for mild reaction conditions, simple operation, short reaction time, easy recycling of the ionic liquid catalyst and ready separation of products and catalyst.展开更多
Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol fr...Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol from wastewater and obtain valuable phenolic compound.One of potential method is extraction using green based liquid organic solvent.Therefore,the feasibility of using palm oil was investigated.In this research,palm oil based organic phase was used as diluents to treat a simulated wastewater containing 300×10^(-6) of phenol solution using emulsion liquid membrane process(ELM).The stability of water-in-oil(W/O) emulsion on diluent composition and the parameters affecting the phenol removal efficiency and stability of the emulsion;such as emulsification speed,emulsification time,agitation speed,surfactant concentration,pH of external phase,contact time,stripping agent concentration and treat ratio were carried out.The results of ELM study showed that at ratio7 to 3 of palm oil to kerosene,5 min and 1300 r·min^(-1) of emulsification process the stabile primary emulsion were formed.Also,no carrier is needed to facilitate the phenol extraction.In experimental conditions of500 r·min^(-1) of agitation speed,3%Span 80,pH 8 of external phase,5 min of contact time,0.1 mol·L^(-1) NaOH as stripping agent and 1:10 of treat ratio,the ELM process was very promising for removing the phenol from the wastewater.The extraction performance at about 83%of phenol was removed for simulated wastewater and an enrichment of phenol in recovery phase as phenolate compound was around 11 times.展开更多
Coalification temperatures are often considered to be approximately 100-170 ℃ for bituminous coal and 170-275 ℃ for anthracite. However, our micropetrographic observations, solid state ^27Al magic-angle spinning nuc...Coalification temperatures are often considered to be approximately 100-170 ℃ for bituminous coal and 170-275 ℃ for anthracite. However, our micropetrographic observations, solid state ^27Al magic-angle spinning nuclear magnetic resonance measurements, interpretation of δ^13C values for whewellite in pelosiderite concretions from Carboniferous sediments, and assessment of whewellite thermal stability show that coalification temperatures can be significantly lower. Also the temperatures of coal alteration may be substantially lower than is stated. Ordinarily, high- temperature alteration is reported, but microthermometric measurements of fluids temperatures and micropetrographic observations show that the coal alteration can take place at low temperatures. For this reason, coals from the Kladno- Rakovnik Basin, part of Late Paleozoic continental basins of the Czech Republic, were analyzed. Regarding coalification, micropetrographic characterizations of unaltered coals, the presence of thermally unstable Al complexes in the coal organic mass documented using ^27Al MAS NMR method, and proven occurrence of whewellite in pelosiderite concretions suggest a lower coalification temperature, max. -70 ℃. Regarding coal alteration, micropetrographic observations revealed (a) the weaker intensity of fluorescence of liptinite, (b) mylonitic structures and microbreccia with carbonate fluid penetration, and (c) high oxygen content in coals (37-38 wt.%). These phenomena are typical for thermal and oxidative alteration of coal. As the temperature of carbonate fluids inferred from fluid inclusion analysis was evaluated as -100-113 ℃, the temperature of coal alteration was suggested as -113℃; the alteration was caused by hot hydrothermal fluids.展开更多
Emulsifying properties of bitter orange (Citrus aurantium) juice-olive oil salad dressings stabilized with different polysaccharides were investigated. Oil-in-water emulsions (50:50, v/v) were prepared with bitte...Emulsifying properties of bitter orange (Citrus aurantium) juice-olive oil salad dressings stabilized with different polysaccharides were investigated. Oil-in-water emulsions (50:50, v/v) were prepared with bitter orange juice-olive oil in the presence of various concentrations (0.1%-1.0%, w/v) of pectin or guar gum or iota-(t-)carrageenan and then these emulsions were homogenized. Emulsion activity index (EAI) and emulsion stability index (ESI) were determined spectrophotometrically by measuring time-dependent changes in turbidity. Creaming stability of emulsions was followed by visual observation of serum layer with respect to time. Microstructures of emulsions were examined by using polarized light microscopy. The addition of polysaccharides improved emulsion stability and emulsions containing higher amounts of polysaccharide were more stable against creaming. Microscopic observations showed that emulsions containing polysaccharides had small droplets as compared to that of emulsions without polysaccharides and emulsions were flocculated due to the presence of polysaccharides. Larger droplets and creaming were observed when the polysaccharide concentration was not sufficient for coverage.展开更多
In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering p...In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering profiles regarding creaming destabilization hyperbolic and sigmoid one. Hyperbolic behavior can be described by a second order kinetics, where k_h could be equaled to a rate constant that describes the creaming process and its values would indicate the stability of emulsions. While for the sigmoid BS pattern, kinetics with two terms, is adequate to describe the creaming process in contrast to kinetics previously reported in the literature. The kh value has the same meaning as before, and ks indicates the delaying effect on the creaming rate.展开更多
This work was undertaken to explore the potential of fruit waste materials as sources of natural antioxidants. Kernels of four varieties of mangoes of Indian origin were studied. Kernels were extracted with five diffe...This work was undertaken to explore the potential of fruit waste materials as sources of natural antioxidants. Kernels of four varieties of mangoes of Indian origin were studied. Kernels were extracted with five different solvents, tested for extraction efficiency and total phenolic content (TPC). As the methanol proved to be the best solvent, it was used for further analysis. The methanolic extracts of kernels had reducing power (RP) and scavenged 2, 2 diphenyl-l-picryl hydrazyl (DPPH) radical, which is related to their antioxidant activity (AA). When analyzed in HPLC, the extracts showed the presence of phenolic compounds. The extracts had the higher capacity to reduce the formation of peroxides and slow down the rate of oxidation than butylated hydroxyl toluene (BHT) in refined, bleached deodorized soybean oil (RBD SBO). Based on the results obtained mango kernels are potential source of natural antioxidants owing to their antioxidant activity.展开更多
Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green s...Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent elec- trochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investi- gated. The electrochemical stability of selected 1Ls comprising five traditional cations, namely imidazolium, pyridinium, pyr- rolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cati- on and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications.展开更多
Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid...Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 m S cm^(-1) under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g^(-1). Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.展开更多
Aqueous organic flow batteries have attracted dramatic attention for stationary energy storage due to their resource sustainability and low cost. However, the current reported systems can normally be operated stably u...Aqueous organic flow batteries have attracted dramatic attention for stationary energy storage due to their resource sustainability and low cost. However, the current reported systems can normally be operated stably under a nitrogen or argon atmosphere due to their poor stability. Herein a stable airinsensitive biphenol derivative cathode, 3,30,5,50-tetramethylaminemethylene-4,40-biphenol(TABP), with high solubility(>1.5 mol L^(-1)) and redox potential(0.91 V vs. SHE) is designed and synthesized by a scalable one-step method. Paring with silicotungstic acid(SWO), an SWO/TABP flow battery shows a stable performance of zero capacity decay over 900 cycles under the air atmosphere. Further, an SWO/TABP flow battery manifests a high rate performance with an energy efficiency of 85% at a current density of60 m A cm^(-2) and a very high volumetric capacity of more than 47 Ah L^(-1). This work provides a new and practical option for next-generation practical large-scale energy storage.展开更多
The stability and reactivity of nanomaterials are of crucial importance for their application, but the long-term effects of stability and reactivity of nanomaterials under practical conditions are still not well under...The stability and reactivity of nanomaterials are of crucial importance for their application, but the long-term effects of stability and reactivity of nanomaterials under practical conditions are still not well understood. In this study, we first established a comprehensive strategy to investigate the stability of a highly reactive nanomaterial from the viewpoint of reaction kinetics with ultrathin tellurium nanowires (TeNWs) as a model material in aqueous solution through an accelerated oxidation process. This allowed us to propose a new approach for the design and synthesis of other unique one-dimensional nanostructures by a chemical transformation process using the intermediate nanostructures "captured" during the dynamic oxidation process under different conditions. In essence, the oxidation of ultrathin TeNWs is a gas-solid reaction which involves liquid, gas and solid phases. It has been demonstrated that the oxidation process of ultrathin TeNWs in aqueous solution can be divided into three stages, namely oxygen limiting, ultrathin TeNWs limiting and mass transfer resistance limiting stages. The apparent oxidation kinetics for ultrathin TeNWs is approximately in accord with a first order reaction kinetics model and has an apparent activation energy as low as TeNWs are thermodynamically unstable 13.53 kJ.mol^-1, indicating that ultrathin However, the unstable nature of ultrathin TeNWs is actually an advantage since it can act as an excellent platform to help us synthesize and design one-dimensional functional nanomaterials--with special structures and distinctive properties--which are difficult to obtain by a direct synthesis method.展开更多
Ionic liquids (ILs) are organic salts with low melting points, which have many unusual properties like negligible vapor pressure, good thermal stability, non-flammability, wide liquid range and electrochemical windo...Ionic liquids (ILs) are organic salts with low melting points, which have many unusual properties like negligible vapor pressure, good thermal stability, non-flammability, wide liquid range and electrochemical window, and excellent solvation power for both organic and inorganic substances. The unique characteristics of ILs endow them with great potential for applications in different fields including chem- ical reactions, extraction and separation, material science, renewable energy, environment, and photoelectric trans- formations. Their properties can be tuned to suit various applications by changing the structures of the cations and/or anions.展开更多
A room temperature ionic liquid crystal, 1-dodecyl-3-ethylimidazolium iodide (C12EImI), and an ionic liquid, 1-decyl-3- ethylimidazolium iodide (Cl0EImI), have been synthesized, characterized and employed as the e...A room temperature ionic liquid crystal, 1-dodecyl-3-ethylimidazolium iodide (C12EImI), and an ionic liquid, 1-decyl-3- ethylimidazolium iodide (Cl0EImI), have been synthesized, characterized and employed as the electrolyte for dye-sensitized solar cells (DSSC). The physicochemical properties show that a smectic A (SmA) phase with a lamellar structure is formed in CIzEImI. Both C^2EImI and Cl0EImI have good electrochemical and thermal stability facilitating their use in DSSC. The steady-state voltammograms reveal that the diffusion coefficient of I3- in C^2EImI is larger than that in CmEImI, which is at- tributed to the existence of the SmA phase in Ca2EImI. Because the iodide species are located between the layers of imidazo- lium cations in CjzEImI, exchange reaction-based diffusion is increased with a consequent increase in, the overall diffusion. The electrochemical impedance spectrum reveals that charge recombination at the dyed TiOJelectrolyte interface of a C12EImI-based DSSC is reduced due to the increase in I3- diffusion, resulting in higher open-circuit voltage. Moreover, both short-circuit current density and fill factor of the Cl2EImI based DSSC increase, as a result of the increasing transport of I3 in C^2EImI. Consequently, the photoelectric conversion efficiency of C^2EImI-based DSSC is higher than that of the Cl0EImI-based DSSC.展开更多
The low energy efficiency and poor cycle stability arising from the high aggressivity of discharge products toward organic electrolytes limit the practical applications of Li-O_(2)batteries(LOBs).Compared with the typ...The low energy efficiency and poor cycle stability arising from the high aggressivity of discharge products toward organic electrolytes limit the practical applications of Li-O_(2)batteries(LOBs).Compared with the typical discharge product Li_(2)O_(2),LiOH shows better chemical and electrochemical stability.In this study,a free-standing cathode composed of hydrangea-likeδ-MnO_(2)with Ag nanoparticles(NPs)embedded in carbon paper(CP)(Ag/δ-MnO_(2)@CP)is fabricated and used as the catalyst for the reversible formation and decomposition of LiOH.The possible discharge mechanism is investigated by in situ Raman measurement and density functional theory calculation.Results confirm thatδ-MnO_(2)dominantly catalyzes the conversion reaction of discharge intermediate LiO_(2)*to LiOH and that Ag particles promote its catalytic ability.In the presence of Ag/δ-MnO_(2)@CP cathode,the LOB exhibits enhanced specific capacity and a high discharge voltage plateau under humid O_(2)atmosphere.At a current density of 200 mA g^(−1),the LOB with the Ag/δ-MnO_(2)@CP cathode presents an overpotential of 0.5 V and an ultra-long cycle life of 867 cycles with a limited specific capacity of 500 mA h g^(−1).This work provides a fresh view on the role of solid catalysts in LOBs and promotes the development of LOBs based on LiOH discharge product for practical applications.展开更多
基金Supported by the Key Program of National Natural Science Foundation of China (21036007)the National High Technology Research and Development Program of China (2011AA050606)
文摘Due to their negligible volatility,reasonable thermal stability,strong dissolubility,wide liquid range and tunability of structure and property,ionic liquids have been regarded as emerging candidate reagents for CO2 cap-ture from industries gases.In this review,the research progresses in CO2 capture using conventional ionic liquids,functionalized ionic liquids,supported ionic-liquids membranes,polymerized ionic liquids and mixtures of ionic liquids with some molecular solvents were investigated and reviewed.Discussion of relevant research fields was presented and the future developments were suggested.
文摘The composition, characteristics and preparation of ionic liquids are presented. The factors influencing the stability of gasoline and the significance of improving gasoline stability are discussed. A novel way to improve the stability of gasoline by using ionic liquid catalyst is developed. The contents of olefin, basic nitrogen and sulfur in gasoline are determined and the optimal experimental conditions for improving gasoline stability are established.The ionic liquid catalyst, which is environmentally friendly, can reduce the olefin content in gasoline, and such process is noted for mild reaction conditions, simple operation, short reaction time, easy recycling of the ionic liquid catalyst and ready separation of products and catalyst.
基金Supported by the Ministry of Higher Education(MOHE)Universiti Teknologi Malaysia(RU Research GrantGUP:Q.J130000.2546.12H50)
文摘Phenol is considered as pollutant due to its toxicity and carcinogenic effect.Thus,variety of innovative methods for separation and recovery of phenolic compounds is developed in order to remove the unwanted phenol from wastewater and obtain valuable phenolic compound.One of potential method is extraction using green based liquid organic solvent.Therefore,the feasibility of using palm oil was investigated.In this research,palm oil based organic phase was used as diluents to treat a simulated wastewater containing 300×10^(-6) of phenol solution using emulsion liquid membrane process(ELM).The stability of water-in-oil(W/O) emulsion on diluent composition and the parameters affecting the phenol removal efficiency and stability of the emulsion;such as emulsification speed,emulsification time,agitation speed,surfactant concentration,pH of external phase,contact time,stripping agent concentration and treat ratio were carried out.The results of ELM study showed that at ratio7 to 3 of palm oil to kerosene,5 min and 1300 r·min^(-1) of emulsification process the stabile primary emulsion were formed.Also,no carrier is needed to facilitate the phenol extraction.In experimental conditions of500 r·min^(-1) of agitation speed,3%Span 80,pH 8 of external phase,5 min of contact time,0.1 mol·L^(-1) NaOH as stripping agent and 1:10 of treat ratio,the ELM process was very promising for removing the phenol from the wastewater.The extraction performance at about 83%of phenol was removed for simulated wastewater and an enrichment of phenol in recovery phase as phenolate compound was around 11 times.
文摘Coalification temperatures are often considered to be approximately 100-170 ℃ for bituminous coal and 170-275 ℃ for anthracite. However, our micropetrographic observations, solid state ^27Al magic-angle spinning nuclear magnetic resonance measurements, interpretation of δ^13C values for whewellite in pelosiderite concretions from Carboniferous sediments, and assessment of whewellite thermal stability show that coalification temperatures can be significantly lower. Also the temperatures of coal alteration may be substantially lower than is stated. Ordinarily, high- temperature alteration is reported, but microthermometric measurements of fluids temperatures and micropetrographic observations show that the coal alteration can take place at low temperatures. For this reason, coals from the Kladno- Rakovnik Basin, part of Late Paleozoic continental basins of the Czech Republic, were analyzed. Regarding coalification, micropetrographic characterizations of unaltered coals, the presence of thermally unstable Al complexes in the coal organic mass documented using ^27Al MAS NMR method, and proven occurrence of whewellite in pelosiderite concretions suggest a lower coalification temperature, max. -70 ℃. Regarding coal alteration, micropetrographic observations revealed (a) the weaker intensity of fluorescence of liptinite, (b) mylonitic structures and microbreccia with carbonate fluid penetration, and (c) high oxygen content in coals (37-38 wt.%). These phenomena are typical for thermal and oxidative alteration of coal. As the temperature of carbonate fluids inferred from fluid inclusion analysis was evaluated as -100-113 ℃, the temperature of coal alteration was suggested as -113℃; the alteration was caused by hot hydrothermal fluids.
文摘Emulsifying properties of bitter orange (Citrus aurantium) juice-olive oil salad dressings stabilized with different polysaccharides were investigated. Oil-in-water emulsions (50:50, v/v) were prepared with bitter orange juice-olive oil in the presence of various concentrations (0.1%-1.0%, w/v) of pectin or guar gum or iota-(t-)carrageenan and then these emulsions were homogenized. Emulsion activity index (EAI) and emulsion stability index (ESI) were determined spectrophotometrically by measuring time-dependent changes in turbidity. Creaming stability of emulsions was followed by visual observation of serum layer with respect to time. Microstructures of emulsions were examined by using polarized light microscopy. The addition of polysaccharides improved emulsion stability and emulsions containing higher amounts of polysaccharide were more stable against creaming. Microscopic observations showed that emulsions containing polysaccharides had small droplets as compared to that of emulsions without polysaccharides and emulsions were flocculated due to the presence of polysaccharides. Larger droplets and creaming were observed when the polysaccharide concentration was not sufficient for coverage.
文摘In the present work, new kinetics to describe the creaming stability of oil-in-water emulsions determined by backscattering measurements (BS) is proposed. The emulsions assayed exhibited a different backscattering profiles regarding creaming destabilization hyperbolic and sigmoid one. Hyperbolic behavior can be described by a second order kinetics, where k_h could be equaled to a rate constant that describes the creaming process and its values would indicate the stability of emulsions. While for the sigmoid BS pattern, kinetics with two terms, is adequate to describe the creaming process in contrast to kinetics previously reported in the literature. The kh value has the same meaning as before, and ks indicates the delaying effect on the creaming rate.
文摘This work was undertaken to explore the potential of fruit waste materials as sources of natural antioxidants. Kernels of four varieties of mangoes of Indian origin were studied. Kernels were extracted with five different solvents, tested for extraction efficiency and total phenolic content (TPC). As the methanol proved to be the best solvent, it was used for further analysis. The methanolic extracts of kernels had reducing power (RP) and scavenged 2, 2 diphenyl-l-picryl hydrazyl (DPPH) radical, which is related to their antioxidant activity (AA). When analyzed in HPLC, the extracts showed the presence of phenolic compounds. The extracts had the higher capacity to reduce the formation of peroxides and slow down the rate of oxidation than butylated hydroxyl toluene (BHT) in refined, bleached deodorized soybean oil (RBD SBO). Based on the results obtained mango kernels are potential source of natural antioxidants owing to their antioxidant activity.
基金supported by the National Natural Science Foundation of China (21173267, 21473252)
文摘Room temperature ionic liquids (ILs) composed of cations and anions, as well as deep eutectic solvents (DESs) composed of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs), are regarded as green solvents due to their low volatility. They have been used widely for electrochemically driven reactions because they exhibit high conductivity and excellent elec- trochemical stability. However, no systematic investigations on the electrochemical potential windows (EPWs), which could be used to characterize the electrochemical stability, have been reported. In this regard, the EPWs of 33 ILs and 23 DESs have been studied utilizing cyclic voltammetry (CV) method and the effects of structural factors (cations and anions of ILs, and HBDs and HBAs of DESs) and external factors (electrode, water content) on the EPWs have been comprehensively investi- gated. The electrochemical stability of selected 1Ls comprising five traditional cations, namely imidazolium, pyridinium, pyr- rolidinium, piperidinium and ammonium and 13 kinds of versatile anions was studied. The results show that for ILs, both cati- on and anion play an important role on the reductive and oxidative potential limit. For a same IL at different working electrode, for example, glassy carbon (GC), gold (Au) and platinum (Pt) electrode, the largest potential window is almost observed on the GC working electrode. The investigations on the EPWs of choline chloride (ChCl), choline bromide (ChBr), choline iodide (ChI), and methyl urea based DESs show that the DES composed of ChCl and methyl urea has the largest potential window. This work may aid the selection of ILs or DESs for use as a direct electrolyte or a solvent in electrochemical applications.
基金supported by the International S&T Cooperation Program of China (2014DFA61670)the Key Program of National Natural Science Foundation of China (91434203)+1 种基金the International Cooperation and Exchange of the National Natural Science Foundation of China (51561145020)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010103)
文摘Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors(DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 m S cm^(-1) under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g^(-1). Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(21925804,21935003)CASDOE Collaborative Project(121421KYSB20170032)+1 种基金CAS Engineering Laboratory for Electrochemical Energy Storage,Liaoning Revitalization Talents Program(XLYC1802050)China and DICP funding,China(ZZBS201707)。
文摘Aqueous organic flow batteries have attracted dramatic attention for stationary energy storage due to their resource sustainability and low cost. However, the current reported systems can normally be operated stably under a nitrogen or argon atmosphere due to their poor stability. Herein a stable airinsensitive biphenol derivative cathode, 3,30,5,50-tetramethylaminemethylene-4,40-biphenol(TABP), with high solubility(>1.5 mol L^(-1)) and redox potential(0.91 V vs. SHE) is designed and synthesized by a scalable one-step method. Paring with silicotungstic acid(SWO), an SWO/TABP flow battery shows a stable performance of zero capacity decay over 900 cycles under the air atmosphere. Further, an SWO/TABP flow battery manifests a high rate performance with an energy efficiency of 85% at a current density of60 m A cm^(-2) and a very high volumetric capacity of more than 47 Ah L^(-1). This work provides a new and practical option for next-generation practical large-scale energy storage.
文摘The stability and reactivity of nanomaterials are of crucial importance for their application, but the long-term effects of stability and reactivity of nanomaterials under practical conditions are still not well understood. In this study, we first established a comprehensive strategy to investigate the stability of a highly reactive nanomaterial from the viewpoint of reaction kinetics with ultrathin tellurium nanowires (TeNWs) as a model material in aqueous solution through an accelerated oxidation process. This allowed us to propose a new approach for the design and synthesis of other unique one-dimensional nanostructures by a chemical transformation process using the intermediate nanostructures "captured" during the dynamic oxidation process under different conditions. In essence, the oxidation of ultrathin TeNWs is a gas-solid reaction which involves liquid, gas and solid phases. It has been demonstrated that the oxidation process of ultrathin TeNWs in aqueous solution can be divided into three stages, namely oxygen limiting, ultrathin TeNWs limiting and mass transfer resistance limiting stages. The apparent oxidation kinetics for ultrathin TeNWs is approximately in accord with a first order reaction kinetics model and has an apparent activation energy as low as TeNWs are thermodynamically unstable 13.53 kJ.mol^-1, indicating that ultrathin However, the unstable nature of ultrathin TeNWs is actually an advantage since it can act as an excellent platform to help us synthesize and design one-dimensional functional nanomaterials--with special structures and distinctive properties--which are difficult to obtain by a direct synthesis method.
文摘Ionic liquids (ILs) are organic salts with low melting points, which have many unusual properties like negligible vapor pressure, good thermal stability, non-flammability, wide liquid range and electrochemical window, and excellent solvation power for both organic and inorganic substances. The unique characteristics of ILs endow them with great potential for applications in different fields including chem- ical reactions, extraction and separation, material science, renewable energy, environment, and photoelectric trans- formations. Their properties can be tuned to suit various applications by changing the structures of the cations and/or anions.
基金supported by the National Basic Research Program of China(2011CBA00700)the National High Technology Research and Development Program of China(2011AA050510)the National Natural Science Foundation of China(21273242,21003130,21173227)
文摘A room temperature ionic liquid crystal, 1-dodecyl-3-ethylimidazolium iodide (C12EImI), and an ionic liquid, 1-decyl-3- ethylimidazolium iodide (Cl0EImI), have been synthesized, characterized and employed as the electrolyte for dye-sensitized solar cells (DSSC). The physicochemical properties show that a smectic A (SmA) phase with a lamellar structure is formed in CIzEImI. Both C^2EImI and Cl0EImI have good electrochemical and thermal stability facilitating their use in DSSC. The steady-state voltammograms reveal that the diffusion coefficient of I3- in C^2EImI is larger than that in CmEImI, which is at- tributed to the existence of the SmA phase in Ca2EImI. Because the iodide species are located between the layers of imidazo- lium cations in CjzEImI, exchange reaction-based diffusion is increased with a consequent increase in, the overall diffusion. The electrochemical impedance spectrum reveals that charge recombination at the dyed TiOJelectrolyte interface of a C12EImI-based DSSC is reduced due to the increase in I3- diffusion, resulting in higher open-circuit voltage. Moreover, both short-circuit current density and fill factor of the Cl2EImI based DSSC increase, as a result of the increasing transport of I3 in C^2EImI. Consequently, the photoelectric conversion efficiency of C^2EImI-based DSSC is higher than that of the Cl0EImI-based DSSC.
基金financially supported by the High-level Talents’Discipline Construction Fund of Shandong University(31370089963078)the School Research Startup Expenses of Harbin Institute of Technology(Shenzhen)(20190037 and 20210028)+3 种基金China Postdoctoral Science Foundation(2019M661276 and 2021T140150)Guangdong Basic and Applied Basic Research Foundation(2019A1515110756)the National Natural Science Foundation of China(52002094)the Open Fund of Guangdong Provincial Key laboratory of Advanced Energy Storage Materials(AESM202107)。
文摘The low energy efficiency and poor cycle stability arising from the high aggressivity of discharge products toward organic electrolytes limit the practical applications of Li-O_(2)batteries(LOBs).Compared with the typical discharge product Li_(2)O_(2),LiOH shows better chemical and electrochemical stability.In this study,a free-standing cathode composed of hydrangea-likeδ-MnO_(2)with Ag nanoparticles(NPs)embedded in carbon paper(CP)(Ag/δ-MnO_(2)@CP)is fabricated and used as the catalyst for the reversible formation and decomposition of LiOH.The possible discharge mechanism is investigated by in situ Raman measurement and density functional theory calculation.Results confirm thatδ-MnO_(2)dominantly catalyzes the conversion reaction of discharge intermediate LiO_(2)*to LiOH and that Ag particles promote its catalytic ability.In the presence of Ag/δ-MnO_(2)@CP cathode,the LOB exhibits enhanced specific capacity and a high discharge voltage plateau under humid O_(2)atmosphere.At a current density of 200 mA g^(−1),the LOB with the Ag/δ-MnO_(2)@CP cathode presents an overpotential of 0.5 V and an ultra-long cycle life of 867 cycles with a limited specific capacity of 500 mA h g^(−1).This work provides a fresh view on the role of solid catalysts in LOBs and promotes the development of LOBs based on LiOH discharge product for practical applications.