The purpose of this study was to determine the effects of road transportation under heat conditions on some haematological [Ht (haematocrit), blood cells count and EOF (erythrocytes osmotic fragility)] and physiol...The purpose of this study was to determine the effects of road transportation under heat conditions on some haematological [Ht (haematocrit), blood cells count and EOF (erythrocytes osmotic fragility)] and physiological [Tr (rectal temperature), HR (heart) and RR (respiratory rates), and circulating levels of Cor (cortisol), Glu (glucose) and minerals] parameters in Moroccan dromedary camels. The animals were subjected to road transportation stressor for 2 h by truck during the hot-dry season. Blood samples were collected before loading and transport, and at the end of transport. Transportation induced a significant increase (P 〈 0.05) of erythrocytes count, Ht, EOF, Tr, HR and RR by comparison to values observed before transportation. The same stress conditions induced a significant increase (P 〈 0.05) of plasma Cor (ng/mL) and blood Glu (mM) (220 ± 30 vs. 137 ± 20, 9.7 ± 1.2 vs. 6.4 ± 1. 1 respectively) and a significant decrease (P 〈 0.05) of plasma magnesium (mM) (0.5 ± 0.1 vs. 0.9 ± 0.1) comparatively to pre-transportation values. These results indicate that road transportation associated to heat may be considered as a potent stressor which is able to induce several cellular alterations in camels. Further studies of an eventual protective role of vitamin C against haemolysis induced by transportation stress in camel are needed.展开更多
The purpose of this paper is to investigate a novel power cycle using low-temperature heat sources such as oceanic-thermal, biomass as well as industrial waste heat. Both a reheater and a liquid-gas ejector are used i...The purpose of this paper is to investigate a novel power cycle using low-temperature heat sources such as oceanic-thermal, biomass as well as industrial waste heat. Both a reheater and a liquid-gas ejector are used in this ammonia-water based cycle. Energy analysis and parametric analysis are performed to guide the theoretical performance and experimental investigation is done to verify the theoretical results. The results show that the generator pressure, heating source temperature and turbine outlet depressurization made by the ejector can affect the cycle performances. Besides, the experimental thermal efficiency is much lower than the theoretical one on account of the heat losses and irreversibility. Moreover, the performance of liquid-gas ejector is affected by primary flow pressure and temperature.展开更多
文摘The purpose of this study was to determine the effects of road transportation under heat conditions on some haematological [Ht (haematocrit), blood cells count and EOF (erythrocytes osmotic fragility)] and physiological [Tr (rectal temperature), HR (heart) and RR (respiratory rates), and circulating levels of Cor (cortisol), Glu (glucose) and minerals] parameters in Moroccan dromedary camels. The animals were subjected to road transportation stressor for 2 h by truck during the hot-dry season. Blood samples were collected before loading and transport, and at the end of transport. Transportation induced a significant increase (P 〈 0.05) of erythrocytes count, Ht, EOF, Tr, HR and RR by comparison to values observed before transportation. The same stress conditions induced a significant increase (P 〈 0.05) of plasma Cor (ng/mL) and blood Glu (mM) (220 ± 30 vs. 137 ± 20, 9.7 ± 1.2 vs. 6.4 ± 1. 1 respectively) and a significant decrease (P 〈 0.05) of plasma magnesium (mM) (0.5 ± 0.1 vs. 0.9 ± 0.1) comparatively to pre-transportation values. These results indicate that road transportation associated to heat may be considered as a potent stressor which is able to induce several cellular alterations in camels. Further studies of an eventual protective role of vitamin C against haemolysis induced by transportation stress in camel are needed.
基金supported by the National Natural Science Foundation of China (Grant No. 51076146)
文摘The purpose of this paper is to investigate a novel power cycle using low-temperature heat sources such as oceanic-thermal, biomass as well as industrial waste heat. Both a reheater and a liquid-gas ejector are used in this ammonia-water based cycle. Energy analysis and parametric analysis are performed to guide the theoretical performance and experimental investigation is done to verify the theoretical results. The results show that the generator pressure, heating source temperature and turbine outlet depressurization made by the ejector can affect the cycle performances. Besides, the experimental thermal efficiency is much lower than the theoretical one on account of the heat losses and irreversibility. Moreover, the performance of liquid-gas ejector is affected by primary flow pressure and temperature.