A new hydraulic system of a novel automatic transmission (AT) was designed. The dimension and structure of valves and cylinders were designed by theoretical calculation. The dynamic simulation model of hydraulic syste...A new hydraulic system of a novel automatic transmission (AT) was designed. The dimension and structure of valves and cylinders were designed by theoretical calculation. The dynamic simulation model of hydraulic system of AT was established by ITI-SimulationX. Simulation results and theoretical design results were compared to confirm the simulation model. Based on the confirmed simulation model, the simulation results of pressure and flow of the hydraulic system were analyzed. The dynamic simulation method is very helpful for designing and analyzing the performance of hydraulic system and further optimization design. The theoretical design method and dynamic simulation model are feasible for the real industrial applications. The research results can be used in hydraulic system design and optimization.展开更多
In the design of Hydraulic Manifold Blocks (HMB), dynamic performance of inner pipeline networks usually should be evaluated. To meet the design requirements, dynamic characteristic simulation is often needed. Based o...In the design of Hydraulic Manifold Blocks (HMB), dynamic performance of inner pipeline networks usually should be evaluated. To meet the design requirements, dynamic characteristic simulation is often needed. Based on comprehensive study on the existing simulation methods, a new method combined of Power Bond Graph(PBG) and Computational Fluid Dynamic (CFD) is proposed. In this method, flow field of typical channels inside HMB is analyzed with CFD to obtain the local resistance coefficients. Then, with these coefficients, a new sectional lumped-parameter model including kinetic friction factor is developed using PBG. A typical HMB design example is given and the comparison between the simulation and the experimental results demonstrates the feasibility and effectiveness of the proposed method.展开更多
This study presented the specified steps of comprehensively analyzing the hydraulic-driven hammer system with the application of the Virtual Prototype Technology.By comparing the simulation results with experimental p...This study presented the specified steps of comprehensively analyzing the hydraulic-driven hammer system with the application of the Virtual Prototype Technology.By comparing the simulation results with experimental phenomena and data,the correctness of simulation analysis conclusion is verified.Meanwhile,by means of its perfect visualization,the internal work process which can not be seen before is simulated.The mechanism of some abnormal phenomena encountered during the experiment is explained.展开更多
基金Project(911901204) supported by Youth Innovation Foundation of Beijing University of Aeronautics and Astronautics
文摘A new hydraulic system of a novel automatic transmission (AT) was designed. The dimension and structure of valves and cylinders were designed by theoretical calculation. The dynamic simulation model of hydraulic system of AT was established by ITI-SimulationX. Simulation results and theoretical design results were compared to confirm the simulation model. Based on the confirmed simulation model, the simulation results of pressure and flow of the hydraulic system were analyzed. The dynamic simulation method is very helpful for designing and analyzing the performance of hydraulic system and further optimization design. The theoretical design method and dynamic simulation model are feasible for the real industrial applications. The research results can be used in hydraulic system design and optimization.
基金National Natural Science Foundation of China (No.50375023)
文摘In the design of Hydraulic Manifold Blocks (HMB), dynamic performance of inner pipeline networks usually should be evaluated. To meet the design requirements, dynamic characteristic simulation is often needed. Based on comprehensive study on the existing simulation methods, a new method combined of Power Bond Graph(PBG) and Computational Fluid Dynamic (CFD) is proposed. In this method, flow field of typical channels inside HMB is analyzed with CFD to obtain the local resistance coefficients. Then, with these coefficients, a new sectional lumped-parameter model including kinetic friction factor is developed using PBG. A typical HMB design example is given and the comparison between the simulation and the experimental results demonstrates the feasibility and effectiveness of the proposed method.
文摘This study presented the specified steps of comprehensively analyzing the hydraulic-driven hammer system with the application of the Virtual Prototype Technology.By comparing the simulation results with experimental phenomena and data,the correctness of simulation analysis conclusion is verified.Meanwhile,by means of its perfect visualization,the internal work process which can not be seen before is simulated.The mechanism of some abnormal phenomena encountered during the experiment is explained.