针对液压弯辊控制系统的时变性、非线性和不确定性等特点,设计利用G A(遗传算法)优化的P I D神经网络(P I D N N)液压弯辊控制系统。P I D N N控制器不仅具有不依赖被控对象数学模型的优点,而且有很好的动态性能,结构简单易于设计。利用...针对液压弯辊控制系统的时变性、非线性和不确定性等特点,设计利用G A(遗传算法)优化的P I D神经网络(P I D N N)液压弯辊控制系统。P I D N N控制器不仅具有不依赖被控对象数学模型的优点,而且有很好的动态性能,结构简单易于设计。利用G A代替B P算法对P I D N N权值进行优化,克服了B P算法易陷于局部极小的不足。2种优化方法的仿真结果对比表明:G A-P I D N N控制器能够使液压弯辊力快速达到目标值,并且具有较强的抗干扰能力。展开更多
文摘针对液压弯辊控制系统的时变性、非线性和不确定性等特点,设计利用G A(遗传算法)优化的P I D神经网络(P I D N N)液压弯辊控制系统。P I D N N控制器不仅具有不依赖被控对象数学模型的优点,而且有很好的动态性能,结构简单易于设计。利用G A代替B P算法对P I D N N权值进行优化,克服了B P算法易陷于局部极小的不足。2种优化方法的仿真结果对比表明:G A-P I D N N控制器能够使液压弯辊力快速达到目标值,并且具有较强的抗干扰能力。