The segregated flow pattern, which occurs in a 26.1 mm diameter, horizontal, stainless steel test section, is investigated. Pressure gradient and in situ phase distribution data were obtained for different combination...The segregated flow pattern, which occurs in a 26.1 mm diameter, horizontal, stainless steel test section, is investigated. Pressure gradient and in situ phase distribution data were obtained for different combinations of phase superficial velocities ranging from 0.05 m.s^-1 to 0,96 m.s^-1. For the current small Eoetvoes number liquid-liquid system (EOD=4.77), the dominant effect of interfacial tension and wall-wetting properties of the liquids over the gravity is considered. The approach introduces the closure relationship for the case of turbulent flow m a rough pipe, and attempts to modify the two-fluid model to account for the curved interface. In present flow rates range, wave amplitudes were found small, while interfacial mixing was observed. An adjustable definition for hydraulic diame- ters of two fluids and interfacial friction factor is adopted. The predicted pressure gradient and in situ phase distribution data have been compared with present experimental data and those reported in the literature.展开更多
A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is compos...A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is composed of a gear pump, a reversing valve, a relief valve and other components. By using the steady penetration method, the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured, the grain diameters of the coal samples were selected as 2.5-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, 20-25 mm and 2.5-25 ram, respectively. After measuring the permeability under each porosity, the overfall pressure of the relief valve continuously increased until the coal sample was broken down. In this way, the flow type of liquid inside the broken coal samples changed from seepage to pipe flow. The correlation between breakdown pressure gradient (BPG) and porosity was analyzed, and the BPG was compared with the pressure gradient when seepage instability occurred. The results show that, ①the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ②the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity, and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient. The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.展开更多
In order to present a new method for plugging channeling in oil field,the injection modes and validity period of foam system which plugged the formation water layer were studied by means of the experimental model whic...In order to present a new method for plugging channeling in oil field,the injection modes and validity period of foam system which plugged the formation water layer were studied by means of the experimental model which simulated the real conditions of oil wells existing channeling.Above all,the influence factors including reservoir pressure,permeability,oil saturation and gas-to-liquid ratio were studied through dynamic experiment.Then,in light of the technology characteristics of foam injection in oil field,the comparison between gas-liquid and liquid-gas injection modes was studied.The result shows that the gas-liquid injection mode can ensure the foam injectivity and plugging performance.The plugging validity of nitrogen foam injected into the formation water layer was evaluated in different plugging pressure gradients by the dynamic method which is more reasonable than the static evaluation method in laboratory.The research demonstrates that the plugging validity period of foam decreases with plugging pressure gradient increasing.If the plugging pressure gradient is 0.15 MPa/m,the validity period is 160 h.Finally,a empirical equation and a plate about the plugging validity and the plugging pressure gradient were obtained for forecasting the validity period of foam.展开更多
The overall objectives to support analytically the mathematical background of hydraulics, linking the Navier-Stokes with hydraulic formulas, which origin is experimental but have wide and varied application. This, lea...The overall objectives to support analytically the mathematical background of hydraulics, linking the Navier-Stokes with hydraulic formulas, which origin is experimental but have wide and varied application. This, leads us study the inverse problem of the coefficients of differential equations, such as equations of the porous medium, Saint-Venant, and Reynolds, and accordingly with the order of derivatives. The research led us to see that the classic version suffers from a parameter that reflects the fractal and non-local character of the viscous interaction. Motivated by the concept of spatial occupancy rate, the authors set forth Navier-Stokes's fractional equation and the authors obtain the fractional Saint-Venant. In particular, the hydraulic gradient, or friction, is conceived as a fractional derivative of velocity. The friction factor is described as a linear operator acting on speed, so that the information it contains is transferred to the order of the derivative, so that the same is linearly related to the exponent of the friction factor. It states Darcy's non-linear law. The authors take a previous result that describes the nonlinear flow law with a leading term that contains a hyper-geometric function, whose parameters depend on the exponent of the friction factor and the exponent of the hydraulic radius. It searches the various laws of flow according to the best known laws of hydraulic resistance, such as Chezy and Manning.展开更多
基金the National High Technology Research and Development Program of China (2006AA09Z333)
文摘The segregated flow pattern, which occurs in a 26.1 mm diameter, horizontal, stainless steel test section, is investigated. Pressure gradient and in situ phase distribution data were obtained for different combinations of phase superficial velocities ranging from 0.05 m.s^-1 to 0,96 m.s^-1. For the current small Eoetvoes number liquid-liquid system (EOD=4.77), the dominant effect of interfacial tension and wall-wetting properties of the liquids over the gravity is considered. The approach introduces the closure relationship for the case of turbulent flow m a rough pipe, and attempts to modify the two-fluid model to account for the curved interface. In present flow rates range, wave amplitudes were found small, while interfacial mixing was observed. An adjustable definition for hydraulic diame- ters of two fluids and interfacial friction factor is adopted. The predicted pressure gradient and in situ phase distribution data have been compared with present experimental data and those reported in the literature.
基金Supported by the National Natural Science Foundation of China (50974107) the University Graduate Research and Innovation Project in Jiangsu Province (CXZZI2_0924)+1 种基金 the Applied Basic Research Project of Yancheng Institute of Technology (XKR2010010) the State Key Laboratory Open Foundation of Deep Geomechanics and Underground Engineering of China University of Mining and Technology (SKLGDUEK1014)
文摘A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine, crushed rock compaction containing cylinder and a self-designed seepage circuit, which is composed of a gear pump, a reversing valve, a relief valve and other components. By using the steady penetration method, the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured, the grain diameters of the coal samples were selected as 2.5-5 mm, 5-10 mm, 10-15 mm, 15-20 mm, 20-25 mm and 2.5-25 ram, respectively. After measuring the permeability under each porosity, the overfall pressure of the relief valve continuously increased until the coal sample was broken down. In this way, the flow type of liquid inside the broken coal samples changed from seepage to pipe flow. The correlation between breakdown pressure gradient (BPG) and porosity was analyzed, and the BPG was compared with the pressure gradient when seepage instability occurred. The results show that, ①the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ②the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity, and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient. The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.
基金Project(2006CB705800)supported by the National Basic Research Program of China
文摘In order to present a new method for plugging channeling in oil field,the injection modes and validity period of foam system which plugged the formation water layer were studied by means of the experimental model which simulated the real conditions of oil wells existing channeling.Above all,the influence factors including reservoir pressure,permeability,oil saturation and gas-to-liquid ratio were studied through dynamic experiment.Then,in light of the technology characteristics of foam injection in oil field,the comparison between gas-liquid and liquid-gas injection modes was studied.The result shows that the gas-liquid injection mode can ensure the foam injectivity and plugging performance.The plugging validity of nitrogen foam injected into the formation water layer was evaluated in different plugging pressure gradients by the dynamic method which is more reasonable than the static evaluation method in laboratory.The research demonstrates that the plugging validity period of foam decreases with plugging pressure gradient increasing.If the plugging pressure gradient is 0.15 MPa/m,the validity period is 160 h.Finally,a empirical equation and a plate about the plugging validity and the plugging pressure gradient were obtained for forecasting the validity period of foam.
文摘The overall objectives to support analytically the mathematical background of hydraulics, linking the Navier-Stokes with hydraulic formulas, which origin is experimental but have wide and varied application. This, leads us study the inverse problem of the coefficients of differential equations, such as equations of the porous medium, Saint-Venant, and Reynolds, and accordingly with the order of derivatives. The research led us to see that the classic version suffers from a parameter that reflects the fractal and non-local character of the viscous interaction. Motivated by the concept of spatial occupancy rate, the authors set forth Navier-Stokes's fractional equation and the authors obtain the fractional Saint-Venant. In particular, the hydraulic gradient, or friction, is conceived as a fractional derivative of velocity. The friction factor is described as a linear operator acting on speed, so that the information it contains is transferred to the order of the derivative, so that the same is linearly related to the exponent of the friction factor. It states Darcy's non-linear law. The authors take a previous result that describes the nonlinear flow law with a leading term that contains a hyper-geometric function, whose parameters depend on the exponent of the friction factor and the exponent of the hydraulic radius. It searches the various laws of flow according to the best known laws of hydraulic resistance, such as Chezy and Manning.