Based on a comprehensive analysis of the structure and existing problems ofthe gear pump, provided a structure principle of a synchronous gear pump.The discussionsfocused on the working principle, construction feature...Based on a comprehensive analysis of the structure and existing problems ofthe gear pump, provided a structure principle of a synchronous gear pump.The discussionsfocused on the working principle, construction features and finite element analysis ofthe hydraulic gear.The research indicates that the new pump has such advantages aslower noise, better distributed flow and a high work pressure, and it can be widely used inhydraulic systems.展开更多
The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium allo...The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium alloy. A coMPact ceramic layer of more than 130 μm was developed on the movable endplate with the hardness up to HV1000 by means of microarc oxidation. A trial of tests conducted in a water power transmission system show that the maximum outlet pressure of the gear pump with the movable endplate treated by microarc oxidation, can reach 16 MPa. It is pointed out that the ceramic coating developed by microarc oxidation technology on the surface of aluminium alloy, is economical and feasible.展开更多
A theory for multi-pump and multi-motor hydraulic systems is presented in this paper based on the analysis of the advantages and disadvantages of the popular hydraulic transmission and the double-stator motor(pump).By...A theory for multi-pump and multi-motor hydraulic systems is presented in this paper based on the analysis of the advantages and disadvantages of the popular hydraulic transmission and the double-stator motor(pump).By taking the single-acting fixed displacement multi-pump and multi-motor driving system as an example,the output speeds in a variety of connections of this novel hydraulic transmission are analyzed theoretically.This research work lays a theoretical foundation for the study of the multi-pump and multi-motor driving system and for the design of the system principle diagram.展开更多
文摘Based on a comprehensive analysis of the structure and existing problems ofthe gear pump, provided a structure principle of a synchronous gear pump.The discussionsfocused on the working principle, construction features and finite element analysis ofthe hydraulic gear.The research indicates that the new pump has such advantages aslower noise, better distributed flow and a high work pressure, and it can be widely used inhydraulic systems.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60772077)
文摘The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium alloy. A coMPact ceramic layer of more than 130 μm was developed on the movable endplate with the hardness up to HV1000 by means of microarc oxidation. A trial of tests conducted in a water power transmission system show that the maximum outlet pressure of the gear pump with the movable endplate treated by microarc oxidation, can reach 16 MPa. It is pointed out that the ceramic coating developed by microarc oxidation technology on the surface of aluminium alloy, is economical and feasible.
基金supported by the National Natural Science Foundation of China (Grant No. 50975246)
文摘A theory for multi-pump and multi-motor hydraulic systems is presented in this paper based on the analysis of the advantages and disadvantages of the popular hydraulic transmission and the double-stator motor(pump).By taking the single-acting fixed displacement multi-pump and multi-motor driving system as an example,the output speeds in a variety of connections of this novel hydraulic transmission are analyzed theoretically.This research work lays a theoretical foundation for the study of the multi-pump and multi-motor driving system and for the design of the system principle diagram.