This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high...This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high accuracy gear shunt motor to match the flow for 4 lifting cylinders, and also allocates bypass throttles to realize automatic lifting. Through the dis- placement sensor feedback the height deviation among 4 lifting cylinders during the whole lifting process, when the deviation is up to the sitting value, the corresponding bypass throttle is operated immediately to reduce the deviation, so that the moving platform of the powered support would not be stuck. Through real application, it is shown that this system can realize automatic lifting of powered support; the lifting speed is controlled between 5 and 10 mm/s, and the final aligning accuracy is up to 1 mm.展开更多
The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium allo...The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium alloy. A coMPact ceramic layer of more than 130 μm was developed on the movable endplate with the hardness up to HV1000 by means of microarc oxidation. A trial of tests conducted in a water power transmission system show that the maximum outlet pressure of the gear pump with the movable endplate treated by microarc oxidation, can reach 16 MPa. It is pointed out that the ceramic coating developed by microarc oxidation technology on the surface of aluminium alloy, is economical and feasible.展开更多
As the most significant performance, compliance of hydraulic system is defined as the capacity to accommodate the sudden change of the external load. Due to the different requirements of the compliant tasks, the exist...As the most significant performance, compliance of hydraulic system is defined as the capacity to accommodate the sudden change of the external load. Due to the different requirements of the compliant tasks, the existing method for mechanical systems cannot be used in the analysis and design of the hydraulic system. In this paper, the definition and expression of compliance of hydraulic system are proposed to evaluate the compliance of the hydraulic system operating under sudden change load. Because the unexpected geological conditions during excavation may exert sudden change load to the shield tunneling machine, the compliance theory has found a right application in the thrust hydraulic system. By analyzing the basic operating principle and the commonly used architectures of the thrust hydraulic system, a compliance based thrust hydraulic system design method is presented. Moreover, a tunneling case is investigated in the paper as an example to expound the validation of design procedure. In conclusion, the compliance of the hydraulic system can be served as an evaluation of the capability in conforming to the load impact, giving supports for the design of the thrust hydraulic system of shield tunneling machines.展开更多
文摘This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high accuracy gear shunt motor to match the flow for 4 lifting cylinders, and also allocates bypass throttles to realize automatic lifting. Through the dis- placement sensor feedback the height deviation among 4 lifting cylinders during the whole lifting process, when the deviation is up to the sitting value, the corresponding bypass throttle is operated immediately to reduce the deviation, so that the moving platform of the powered support would not be stuck. Through real application, it is shown that this system can realize automatic lifting of powered support; the lifting speed is controlled between 5 and 10 mm/s, and the final aligning accuracy is up to 1 mm.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60772077)
文摘The ceramic coating technology of microarc oxidation (MAO) was utilized to modify surface properties of the movable endplate of a high pressure gear pump used in water-hydraulic system, which is made of aluminium alloy. A coMPact ceramic layer of more than 130 μm was developed on the movable endplate with the hardness up to HV1000 by means of microarc oxidation. A trial of tests conducted in a water power transmission system show that the maximum outlet pressure of the gear pump with the movable endplate treated by microarc oxidation, can reach 16 MPa. It is pointed out that the ceramic coating developed by microarc oxidation technology on the surface of aluminium alloy, is economical and feasible.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2007CB714004)the Open Fund of State Key Laboratory of Fluid Power Transmission and Control of Zhejiang University (Grant No. GZKF-201210)the National High-tech R&D Program of China ("863" Program) (Grant No. 2012AA040701)
文摘As the most significant performance, compliance of hydraulic system is defined as the capacity to accommodate the sudden change of the external load. Due to the different requirements of the compliant tasks, the existing method for mechanical systems cannot be used in the analysis and design of the hydraulic system. In this paper, the definition and expression of compliance of hydraulic system are proposed to evaluate the compliance of the hydraulic system operating under sudden change load. Because the unexpected geological conditions during excavation may exert sudden change load to the shield tunneling machine, the compliance theory has found a right application in the thrust hydraulic system. By analyzing the basic operating principle and the commonly used architectures of the thrust hydraulic system, a compliance based thrust hydraulic system design method is presented. Moreover, a tunneling case is investigated in the paper as an example to expound the validation of design procedure. In conclusion, the compliance of the hydraulic system can be served as an evaluation of the capability in conforming to the load impact, giving supports for the design of the thrust hydraulic system of shield tunneling machines.