组合型振荡浮子式波浪发电装置由能量俘获系统与能量转换系统构成,其中能量转换系统直接决定整个装置的能量转换效率和发电功率。基于前期10 k W波浪发电装置的海试结果,对装置中的直驱型液压式能量转换系统进行结构优化,设计一种应用于...组合型振荡浮子式波浪发电装置由能量俘获系统与能量转换系统构成,其中能量转换系统直接决定整个装置的能量转换效率和发电功率。基于前期10 k W波浪发电装置的海试结果,对装置中的直驱型液压式能量转换系统进行结构优化,设计一种应用于100 k W波浪发电装置的蓄能型液压式能量转换系统,并研制"液压自调整控制系统",实现能量转换系统蓄能与放能过程的解耦控制。通过现场试验,验证优化后的能量转换系统在提高能量转换效率和维持过程平稳性上的有效性。基于该能量转换系统的能量输出特性,提出发电机带纯阻性负载时的"最大功率点跟踪"匹配负载计算方法,以及后续并网电力变换系统的拓扑结构设计,并通过Simulink仿真,验证方案的可靠性。展开更多
The variable gas exchange valve actuation systems have been developed in order to improve the efficiency of the combustion process. The electro-hydraulic valve actuation (EHVA) systems have good power to weight rati...The variable gas exchange valve actuation systems have been developed in order to improve the efficiency of the combustion process. The electro-hydraulic valve actuation (EHVA) systems have good power to weight ratio, high maximum force and good controllability. The disadvantages are limited frequency bandwidth and energy recovery. Each component of the EHVA system has certain energy consumption, which is characteristic to the component. In this study the power consumptions of the components are investigated by means of the simulation. The investigated components are a hydraulic pump, a hydraulic accumulator, a control valve, and hydraulic lines connecting the components. The pressure losses caused by the oil flow are most significant in the control valves, 50-60% of the total energy consumption. If the stored kinetic energy of the actuator and moving oil masses could be reused, the energy consumption could be up to 25% better.展开更多
Although hydraulic drives have an advantage of high power density, volumetric shrinkage of hydraulic fluids due to pressure causes various disadvantages such as delay of hydraulic response and compression energy loss....Although hydraulic drives have an advantage of high power density, volumetric shrinkage of hydraulic fluids due to pressure causes various disadvantages such as delay of hydraulic response and compression energy loss. Hydraulic fluids of new concept, high bulk modulus oils, have been developed as a new approach to improve the performance of a hydraulic servo system and verified. In this paper, practical performances of high bulk modulus oil, such as oil temperature rise during pump test, air bubbles generation by ultrasonic wave vibration, oxidation stability and anti-wear property, were studied. And the new oil was confirmed to have excellent practical performances besides advantages in pressure response and volumetric efficiency of pumps. Various new applications of the new oil are promising.展开更多
文摘组合型振荡浮子式波浪发电装置由能量俘获系统与能量转换系统构成,其中能量转换系统直接决定整个装置的能量转换效率和发电功率。基于前期10 k W波浪发电装置的海试结果,对装置中的直驱型液压式能量转换系统进行结构优化,设计一种应用于100 k W波浪发电装置的蓄能型液压式能量转换系统,并研制"液压自调整控制系统",实现能量转换系统蓄能与放能过程的解耦控制。通过现场试验,验证优化后的能量转换系统在提高能量转换效率和维持过程平稳性上的有效性。基于该能量转换系统的能量输出特性,提出发电机带纯阻性负载时的"最大功率点跟踪"匹配负载计算方法,以及后续并网电力变换系统的拓扑结构设计,并通过Simulink仿真,验证方案的可靠性。
文摘The variable gas exchange valve actuation systems have been developed in order to improve the efficiency of the combustion process. The electro-hydraulic valve actuation (EHVA) systems have good power to weight ratio, high maximum force and good controllability. The disadvantages are limited frequency bandwidth and energy recovery. Each component of the EHVA system has certain energy consumption, which is characteristic to the component. In this study the power consumptions of the components are investigated by means of the simulation. The investigated components are a hydraulic pump, a hydraulic accumulator, a control valve, and hydraulic lines connecting the components. The pressure losses caused by the oil flow are most significant in the control valves, 50-60% of the total energy consumption. If the stored kinetic energy of the actuator and moving oil masses could be reused, the energy consumption could be up to 25% better.
文摘Although hydraulic drives have an advantage of high power density, volumetric shrinkage of hydraulic fluids due to pressure causes various disadvantages such as delay of hydraulic response and compression energy loss. Hydraulic fluids of new concept, high bulk modulus oils, have been developed as a new approach to improve the performance of a hydraulic servo system and verified. In this paper, practical performances of high bulk modulus oil, such as oil temperature rise during pump test, air bubbles generation by ultrasonic wave vibration, oxidation stability and anti-wear property, were studied. And the new oil was confirmed to have excellent practical performances besides advantages in pressure response and volumetric efficiency of pumps. Various new applications of the new oil are promising.