针对液压重载机械臂的动态倾覆稳定性问题,提出了一种基于改进快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法的路径规划方法。与只对危险工况的静态稳定性校核不同,该算法以机械臂运动过程中的动态倾覆稳定性最优为目标,在机...针对液压重载机械臂的动态倾覆稳定性问题,提出了一种基于改进快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法的路径规划方法。与只对危险工况的静态稳定性校核不同,该算法以机械臂运动过程中的动态倾覆稳定性最优为目标,在机械臂的关节空间内进行路径规划。以7个关节变量组成的七维数组作为采样点,结合正运动学与力矩法建立机械臂的动态倾覆稳定性计算模型,利用双采样点择优原则,选择其在对应位姿下抗倾覆稳定力矩最优的随机点作为采样点,以增强算法的启发性。在Matlab平台进行的仿真实验表明,改进RRT算法规划路径的倾覆裕度在3种典型工况下分别提升了37%、28%和38%,有效地改善了液压重载机械臂作业平台的抗倾覆稳定性。展开更多
文摘针对液压重载机械臂的动态倾覆稳定性问题,提出了一种基于改进快速扩展随机树(Rapidly-exploring Random Tree,RRT)算法的路径规划方法。与只对危险工况的静态稳定性校核不同,该算法以机械臂运动过程中的动态倾覆稳定性最优为目标,在机械臂的关节空间内进行路径规划。以7个关节变量组成的七维数组作为采样点,结合正运动学与力矩法建立机械臂的动态倾覆稳定性计算模型,利用双采样点择优原则,选择其在对应位姿下抗倾覆稳定力矩最优的随机点作为采样点,以增强算法的启发性。在Matlab平台进行的仿真实验表明,改进RRT算法规划路径的倾覆裕度在3种典型工况下分别提升了37%、28%和38%,有效地改善了液压重载机械臂作业平台的抗倾覆稳定性。