A heat and mass transfer model was proposed for the thin liquid film on the hot solid surface cooled by the impinging small droplets, with consideration of the effect of the droplet impact, surface tension, thermocapi...A heat and mass transfer model was proposed for the thin liquid film on the hot solid surface cooled by the impinging small droplets, with consideration of the effect of the droplet impact, surface tension, thermocapillary, evaporation/condensation, and van der Waals attraction. The nondimensional equation for predicting the evolution of the interface of the thin liquid film was derived in the presented model with the relevant boundary conditions. The stability of the thin liquid film impacted by cool small droplets is discussed.展开更多
Quantitative temperature measurement using wide band thermochromic liquid crystals is an "area" thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light...Quantitative temperature measurement using wide band thermochromic liquid crystals is an "area" thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.展开更多
Lithium(Li) metal is widely considered as a promising anode for next-generation lithium metal batteries(LMBs) due to its high theoretical capacity and lowest electrochemical potential. However, the uncontrollable form...Lithium(Li) metal is widely considered as a promising anode for next-generation lithium metal batteries(LMBs) due to its high theoretical capacity and lowest electrochemical potential. However, the uncontrollable formation of Li dendrites has prevented its practical application. Herein, we propose a kind of multifunctional electrolyte additives(potassium perfluorinated sulfonates) from the multi-factor principle for electrolyte additive molecular design(EDMD) view to suppress the Li dendrite growth. The effects of these additives are revealed through experimental results, molecular dynamics simulations and firstprinciples calculations. Firstly, K^(+)can form an electrostatic shield on the surface of Li anode to prevent the growth of Li dendrites. Secondly, potassium perfluorinated sulfonates can improve the activity of electrolytes as co-conductive salts, and lower the electro-potential of Li nucleation. Thirdly, perfluorinated sulfonate anions not only can change the Li^(+)solvation sheath structure to decrease the desolvation energy barrier and increase the ion migration rate, but also can be partly decomposed to form the superior solid electrolyte interphase(SEI). Benefited from the synergistic effects, an outstanding cycle life over250 h at 1 m A cm^(-2) is achieved in symmetric Li||Li cells. In particular, potassium perfluorinated sulfonate additives(e.g., potassium perfluorohexyl sulfonate, denoted as K+PFHS) can also contribute to the formation of high-quality cathode electrolyte interphase(CEI). As a result, Li||LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2) full cells exhibit significantly enhanced cycling stability. This multi-factor principle for EDMD offers a unique insight on understanding the electrochemical behavior of ion-type electrolyte additives on both the Li metal anode and high-voltage cathode.展开更多
基金Project supported by the Shanghai Leading Academic Discipline Project (Grant No.Y0103).
文摘A heat and mass transfer model was proposed for the thin liquid film on the hot solid surface cooled by the impinging small droplets, with consideration of the effect of the droplet impact, surface tension, thermocapillary, evaporation/condensation, and van der Waals attraction. The nondimensional equation for predicting the evolution of the interface of the thin liquid film was derived in the presented model with the relevant boundary conditions. The stability of the thin liquid film impacted by cool small droplets is discussed.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China,NSFC, (the NSFC project's
文摘Quantitative temperature measurement using wide band thermochromic liquid crystals is an "area" thermal measurement technique. This technique utilizes the feature that liquid crystal changes its reflex light color with variation of temperature and applies an image capturing and processing system to calibrate the characteristic curve of liquid crystal’s color-temperature. Afterwards, the technique uses this curve to measure the distribution of temperature on experimental model. In this paper, firstly, each part of quantitative temperature measurement system using liquid crystal is illustrated and discussed. Then the technique is employed in a long duration hypersonic wind tunnel, and the quantitative result of the heat transfer coefficient along laminar plate is obtained. Additionally, some qualitative results are also given. In the end, comparing the experimental results with reference enthalpy theoretical results, a conclusion of thermal measurement accuracy is drawn.
基金supported by the National Natural Science Foundation of China (11675051)the China Postdoctoral Science Foundation (2020M672477)the Key Research and Development Program of Hunan Province,China (2018GK2031)。
文摘Lithium(Li) metal is widely considered as a promising anode for next-generation lithium metal batteries(LMBs) due to its high theoretical capacity and lowest electrochemical potential. However, the uncontrollable formation of Li dendrites has prevented its practical application. Herein, we propose a kind of multifunctional electrolyte additives(potassium perfluorinated sulfonates) from the multi-factor principle for electrolyte additive molecular design(EDMD) view to suppress the Li dendrite growth. The effects of these additives are revealed through experimental results, molecular dynamics simulations and firstprinciples calculations. Firstly, K^(+)can form an electrostatic shield on the surface of Li anode to prevent the growth of Li dendrites. Secondly, potassium perfluorinated sulfonates can improve the activity of electrolytes as co-conductive salts, and lower the electro-potential of Li nucleation. Thirdly, perfluorinated sulfonate anions not only can change the Li^(+)solvation sheath structure to decrease the desolvation energy barrier and increase the ion migration rate, but also can be partly decomposed to form the superior solid electrolyte interphase(SEI). Benefited from the synergistic effects, an outstanding cycle life over250 h at 1 m A cm^(-2) is achieved in symmetric Li||Li cells. In particular, potassium perfluorinated sulfonate additives(e.g., potassium perfluorohexyl sulfonate, denoted as K+PFHS) can also contribute to the formation of high-quality cathode electrolyte interphase(CEI). As a result, Li||LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2) full cells exhibit significantly enhanced cycling stability. This multi-factor principle for EDMD offers a unique insight on understanding the electrochemical behavior of ion-type electrolyte additives on both the Li metal anode and high-voltage cathode.