The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector...The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions.展开更多
Based on a simplified model reference adaptive control(SMRAC) algorithm a parameter modification algorithm according to fuzzy laws is proposed in this paper. The method makes the adaptive parameters in SMRAC only rely...Based on a simplified model reference adaptive control(SMRAC) algorithm a parameter modification algorithm according to fuzzy laws is proposed in this paper. The method makes the adaptive parameters in SMRAC only rely on the status of performance error. Thus it eliminates the influences of gain coefficients in SMRAC and the amplitude of input signal on the dynamic characteristics. Experiments on various step amplitudes and loads show that the performances of SMRAC are improved by incorporating fuzzy modification method.展开更多
The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this ...The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve last response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation, compared with classic PI controller.展开更多
The fuzzy NN predictive control algorithm introduced in this paper uses fuzzy neural network to model the nonlinear MIMO process. Its training method that integrates LS and BP algorithm brings quick convergence. GPC a...The fuzzy NN predictive control algorithm introduced in this paper uses fuzzy neural network to model the nonlinear MIMO process. Its training method that integrates LS and BP algorithm brings quick convergence. GPC algorithm is used as the predictive component. The fuzzy neural network has six layers, including input layer, output layer and four hidden layers. An application to a MIMO nonlinear process(green liquor system of the recovery system in a pulp factory shows that this algorithm has better performance than normal PID algrithm.展开更多
Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to ...Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.展开更多
Synchronized distributed measurements of mode parameters create a technical feasibility for development and implementing new technologies of control the mode stability and the admissibility of EPS (electric power sys...Synchronized distributed measurements of mode parameters create a technical feasibility for development and implementing new technologies of control the mode stability and the admissibility of EPS (electric power system) mode. Discussion will focus on different models obtained from data synchronized measurements for operational and automatic emergency control without EPS being totally controlled. According to the proposed technology, the generator's output power restrictions are determined in real-time by the terms a static stability using the generators' mode model as a multipole with connection nodes of generators' electromotive forces (the matrix of SMA (self and mutual admittances) of electromotive forces of generators). Potential applications of the technology are distribution network with the main substation and generators of commensurable capacity, and transmission network with large power plants (generators) distributed into the network. The one-level control system for all of generators with defining the generator's power limits relative to the main substation is implemented in the first case. In the second case, the two-level control system is brought in, based on the separation of large and small generation motion. The results of the method and technology efficiency verification are shown in the paper, by both computer simulations of the power system modes and its physical model.展开更多
Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The...Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The former possesses the feature of fast dynamic response. However, the poor energy-saving performance is its major fault. On the contrary, the hydraulic pump-controlled system has the significant advantage of energy-saving which meets the current demand in modem machine design. In this paper, the simulation analysis using MatLab/SimuLink and DSHplus software for a newly developed energy-saving hydraulic tube bender is conducted. Instead of the conventional fixed displacement hydraulic pump, the new hydraulic tube bender utilizes an internal gear pump with AC servomotor as its driving power source. In the new energy-saving hydraulic circuit, the use of conventional pressure relief valve and unloading valve are no longer necessary since the demanded flow-rate and pressure output can be precisely obtained by continuously changing the speed of the AC servomotor. In addition, two closed-loop control schemes using fuzzy sliding-mode controller are adopted and compared. To compare the energy-saving control systems, such as load-sensing control system, constant supply pressure control scheme and conventional hydraulic control scheme. Furthermore, the simulation results also show that the newly developed hydraulic tube bender can save up to 43% of energy consumption in a working cycle as compared to the conventional hydraulic tube bender.展开更多
With the rapid development of the global economy,more and more attention has been paid to the energy conservation of construction machinery.The hydraulic system is the key component of construction machinery,and impro...With the rapid development of the global economy,more and more attention has been paid to the energy conservation of construction machinery.The hydraulic system is the key component of construction machinery,and improving its energy utilization rate has become an important means to achieve energy conservation.In conventional valve-controlled or pump-controlled hydraulic systems of construction machinery,controllability and energy-saving performance typically cannot be considered at the same time.The pump-valve coordinated system combines the energy-saving characteristics of the pump-controlled system and the high-precision and high-frequency response of the valve-controlled system,which has the potential to become a primary research direction of electro-hydraulic systems.This review summarizes the recent research progress in energy-saving technologies based on pump-valve coordinated systems.Particularly,we discuss the structures of hydraulic systems in different categories of construction machinery,various control methods of the electro-hydraulic system,novel hydraulic hybrid energy regeneration systems,and key components.In addition,future directions and challenges of the pump-valve coordinated systems are described,such as independent metering system(IMS),common pressure rail(CPR),and hybrid power source(HPS).展开更多
文摘The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions.
文摘Based on a simplified model reference adaptive control(SMRAC) algorithm a parameter modification algorithm according to fuzzy laws is proposed in this paper. The method makes the adaptive parameters in SMRAC only rely on the status of performance error. Thus it eliminates the influences of gain coefficients in SMRAC and the amplitude of input signal on the dynamic characteristics. Experiments on various step amplitudes and loads show that the performances of SMRAC are improved by incorporating fuzzy modification method.
基金Project supported by the National Basic Research Program (973) of China (No. 2006CB705400)the National Natural Science Foun- dation of China (No. 50575200)
文摘The highly nonlinear behavior of the system limits the performance of classical linear proportional and integral (PI) controllers used for hot rolling. An active disturbance rejection controller is proposed in this paper to deal with the nonlinear problem of hydraulic servo system in order to preserve last response and small overshoot of control system. The active disturbance rejection (ADR) controller is composed of nonlinear tracking differentiator (TD), extended state observer (ESO) and nonlinear feedback (NF) law. An example of the hydraulic edger system case study is investigated to show the effectiveness and robustness of the proposed nonlinear controller, especially, in the circumstance of foreign disturbance and working condition variation, compared with classic PI controller.
文摘The fuzzy NN predictive control algorithm introduced in this paper uses fuzzy neural network to model the nonlinear MIMO process. Its training method that integrates LS and BP algorithm brings quick convergence. GPC algorithm is used as the predictive component. The fuzzy neural network has six layers, including input layer, output layer and four hidden layers. An application to a MIMO nonlinear process(green liquor system of the recovery system in a pulp factory shows that this algorithm has better performance than normal PID algrithm.
基金The Project Supported by Doctoral Programme Foundation of Institution of Higher Education
文摘Pump controlled motor electrohydraulic servo systems are much used in circumstances where high power drive is needed. This kind of system has the advantage of energy-saving. But, it also has some defects that have to be improved. Microcomputer control of a pump controlled motor electrohydraulic servo system is studied. A PID controller is first adopted on the closed loop control system, and experimental results are obtained. Then, a model reference adaptive controller is designed and realised on the same system applying a single board microcomputer. Experimental results show that the dynamic properties of the adaptive control system is much better than those of the PID system under different inertia load conditions.
文摘Synchronized distributed measurements of mode parameters create a technical feasibility for development and implementing new technologies of control the mode stability and the admissibility of EPS (electric power system) mode. Discussion will focus on different models obtained from data synchronized measurements for operational and automatic emergency control without EPS being totally controlled. According to the proposed technology, the generator's output power restrictions are determined in real-time by the terms a static stability using the generators' mode model as a multipole with connection nodes of generators' electromotive forces (the matrix of SMA (self and mutual admittances) of electromotive forces of generators). Potential applications of the technology are distribution network with the main substation and generators of commensurable capacity, and transmission network with large power plants (generators) distributed into the network. The one-level control system for all of generators with defining the generator's power limits relative to the main substation is implemented in the first case. In the second case, the two-level control system is brought in, based on the separation of large and small generation motion. The results of the method and technology efficiency verification are shown in the paper, by both computer simulations of the power system modes and its physical model.
文摘Generally speaking, hydraulic control systems can be divided into two different driving concepts. The first one is the well-known hydraulic valve-controlled system and the second one is the pump-controlled system. The former possesses the feature of fast dynamic response. However, the poor energy-saving performance is its major fault. On the contrary, the hydraulic pump-controlled system has the significant advantage of energy-saving which meets the current demand in modem machine design. In this paper, the simulation analysis using MatLab/SimuLink and DSHplus software for a newly developed energy-saving hydraulic tube bender is conducted. Instead of the conventional fixed displacement hydraulic pump, the new hydraulic tube bender utilizes an internal gear pump with AC servomotor as its driving power source. In the new energy-saving hydraulic circuit, the use of conventional pressure relief valve and unloading valve are no longer necessary since the demanded flow-rate and pressure output can be precisely obtained by continuously changing the speed of the AC servomotor. In addition, two closed-loop control schemes using fuzzy sliding-mode controller are adopted and compared. To compare the energy-saving control systems, such as load-sensing control system, constant supply pressure control scheme and conventional hydraulic control scheme. Furthermore, the simulation results also show that the newly developed hydraulic tube bender can save up to 43% of energy consumption in a working cycle as compared to the conventional hydraulic tube bender.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(No.LR19E050002)the National Key R&D Program of China(No.2019YFB2004604)+2 种基金the National Natural Science Foundation of China(Nos.51821093 and 51708493)the Key R&D Program of Zhejiang Province(Nos.2018C01020 and 2018C01060)the Youth Funds of the State Key Laboratory of Fluid Power and Mechatronic Systems(No.SKLoFP_QN_1804),China。
文摘With the rapid development of the global economy,more and more attention has been paid to the energy conservation of construction machinery.The hydraulic system is the key component of construction machinery,and improving its energy utilization rate has become an important means to achieve energy conservation.In conventional valve-controlled or pump-controlled hydraulic systems of construction machinery,controllability and energy-saving performance typically cannot be considered at the same time.The pump-valve coordinated system combines the energy-saving characteristics of the pump-controlled system and the high-precision and high-frequency response of the valve-controlled system,which has the potential to become a primary research direction of electro-hydraulic systems.This review summarizes the recent research progress in energy-saving technologies based on pump-valve coordinated systems.Particularly,we discuss the structures of hydraulic systems in different categories of construction machinery,various control methods of the electro-hydraulic system,novel hydraulic hybrid energy regeneration systems,and key components.In addition,future directions and challenges of the pump-valve coordinated systems are described,such as independent metering system(IMS),common pressure rail(CPR),and hybrid power source(HPS).