A resident time model is proposed to evaluate the performance of agitated extraction columns. In this model, the resident time of dispersed drops is simulated with the discrete phase modeling, where the continuous pha...A resident time model is proposed to evaluate the performance of agitated extraction columns. In this model, the resident time of dispersed drops is simulated with the discrete phase modeling, where the continuous phase and the dispersed phase (drops) are described by the single-phase Navier-Stokes (turbulence) model and Lagrangian model, respectively. The interaction of dispersed phase and continuous phase is neglected for the low concentration of drop in the cases studied. The statistical parameters of drops (the average resident time and standard deviation) under different operation conditions are computed for four columns. The relation of the above statistical parameters with the performance of columns is discussed and the criterions for an optimal compartment are outlined. Our results indicate that the resident time model is useful to evaluate the performance and optimize the design of extraction columns.展开更多
基金Supported by the National Natural Science Foundation of China (No. 20376053).
文摘A resident time model is proposed to evaluate the performance of agitated extraction columns. In this model, the resident time of dispersed drops is simulated with the discrete phase modeling, where the continuous phase and the dispersed phase (drops) are described by the single-phase Navier-Stokes (turbulence) model and Lagrangian model, respectively. The interaction of dispersed phase and continuous phase is neglected for the low concentration of drop in the cases studied. The statistical parameters of drops (the average resident time and standard deviation) under different operation conditions are computed for four columns. The relation of the above statistical parameters with the performance of columns is discussed and the criterions for an optimal compartment are outlined. Our results indicate that the resident time model is useful to evaluate the performance and optimize the design of extraction columns.