Large-scale production of graphene and sub- sequent sample engineering is the key for fully-realizing the potential applications proposed to this intriguing two-dimensional nanomaterial. Herein, smart graphene dispers...Large-scale production of graphene and sub- sequent sample engineering is the key for fully-realizing the potential applications proposed to this intriguing two-dimensional nanomaterial. Herein, smart graphene dispersions with low defects and thermo-responsive properties can be obtained by liquid phase exfoliation of graphite using an alkylated Percec monodendron (3,4,5-trioctadecy- loxybenzaldehyde, 1) as the stabilizing reagent. By simply changing the temperature, the dispersed graphene and 1 can be detached, leading to the recovery of both components. Besides noncovalent wrapping, the stabilizing reagent 1 can be also covalently attached to graphene through [3+2] cycloaddition. The covalently functionalized graphene sheets show improved dispersibility in organic solvents compared to the pristine graphene, which opens the door for their applications in various polymer matrixes. The strategy demonstrated here provides a new methodology to get smart graphene dispersions with multiple functions.展开更多
基金supported by the Hundred Talents Program of Chinese Academy of Sciences(Y20245YBR1)the National Natural Science Foundation of China(21402215 and 61474124)the financial support from Shandong Province Higher Education Science and Technology Program(J16LA01)
文摘Large-scale production of graphene and sub- sequent sample engineering is the key for fully-realizing the potential applications proposed to this intriguing two-dimensional nanomaterial. Herein, smart graphene dispersions with low defects and thermo-responsive properties can be obtained by liquid phase exfoliation of graphite using an alkylated Percec monodendron (3,4,5-trioctadecy- loxybenzaldehyde, 1) as the stabilizing reagent. By simply changing the temperature, the dispersed graphene and 1 can be detached, leading to the recovery of both components. Besides noncovalent wrapping, the stabilizing reagent 1 can be also covalently attached to graphene through [3+2] cycloaddition. The covalently functionalized graphene sheets show improved dispersibility in organic solvents compared to the pristine graphene, which opens the door for their applications in various polymer matrixes. The strategy demonstrated here provides a new methodology to get smart graphene dispersions with multiple functions.