The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture...The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture of chloroform-n-heptane.2-(4-Hydrazinocarbonyl- phenyl)-4,5-diphenylimidazole (HCPI) was used as a fluorescent labelling reagent of the fatty acids. The labelling reaction was carried out at 30℃ for 1 h at pH 6.5 and the resulting reaction mixture was sudjected to HPLC. The labelled fatty acid C_(17)(P-C_(17))was used as the internal standard. The la- belled fatty acids C_(16) and C_(18) were separated within 18 min on an ODS-8OTM column (150 mm× 6 mm ID,5μm,Tosoh Japan).The calibrlation curves of fatty acids from the spiked control serum were Y_1=-0.003 7 + 0.0028X_1,r=0.994 for FA C_( 16) and Y_2=0.00 1 2 + 0.00098X_2,r=0.999 for FA C_( 18),respectively.The average recoveries of facids from the spiked contrl serum were 107.2%(n=8,RSD=4.3%)for FA C_(16) and 97.35%(n=8, RSD=4.0%)for FA C_(18),respectively.The lower detection limits of fatty acids after reaction were 12μmol per 20μl injection for FA C_(16) and 18 μmol per 20μl injection for FA C_(18),respectively(signal to noise ratio, S/N=2).The HPLC/CL method was applied to the determination of FA C_(16) and FA C_(18) in normal human serum and the results showed that the concentrations of fatty acids in normal human serum were 0.134 ± 0.009 μ mol/ml serum(n=5) for FA C_(16) and 0.052±0.028 μmol/ml serum(n=5)for FA C_(18),respectively.展开更多
A new method for the determination of baicalin with HPLC-CL was developed. The method was based on the chemiluminescence reaction between KMnO4 and baicalin sensitized from HCHO. The linear range was 3.7?0-6~9.8?0-5...A new method for the determination of baicalin with HPLC-CL was developed. The method was based on the chemiluminescence reaction between KMnO4 and baicalin sensitized from HCHO. The linear range was 3.7?0-6~9.8?0-5 mol/L with detection limit of 1.7?0-6 mol/L and the relative standard deviation was 2.5 % (Cs=6.6?0-5 mol/L, n=5). The method has been applied to the determination of baicalin in oral administration, injection, Scutellariae radix and granules with good results.展开更多
In this paper,shorter residence time(a few minutes)with high yield in the trickle bed process for per- acetic acid synthesis by acetaldehyde liquid phase oxidation can be realized on the selected packing material SA...In this paper,shorter residence time(a few minutes)with high yield in the trickle bed process for per- acetic acid synthesis by acetaldehyde liquid phase oxidation can be realized on the selected packing material SA-5118.For acetaldehyde in acetone with ferric ion as catalyst,the optimized process conditions were presented. The main factors influencing the yield,selectivity and conversion are residence time,temperature and acetaldehyde concentration,respectively.The temperature range checked is from 30 to 65℃.High yield of 81.53%with high se- lectivity of 91.84%can be obtained at higher temperature of 55℃when the residence time is 5.5min and the acet- aldehyde concentration is 9.85%(by mass).And there is a critical acetaldehyde concentration point(Cccp)between 18%and 19.5%(by mass).At temperature less than 55℃,the highest yield to peracetic acid at each temperature level increases with temperature when the acetaldehyde concentration is below Cccp and decreases with temperature when the acetaldehyde concentration is above Cccp.展开更多
Hydroxyl radicals HO are generated under Fenton-like (Fe2++H2O2→HO?+OH?+Fe3+) catalytic conditions upon microwave irradiation. Liquid-phase direct catalytic oxidation of benzene to phenol was obtained using FeSO4 sup...Hydroxyl radicals HO are generated under Fenton-like (Fe2++H2O2→HO?+OH?+Fe3+) catalytic conditions upon microwave irradiation. Liquid-phase direct catalytic oxidation of benzene to phenol was obtained using FeSO4 supported on silica gel as a solid catalyst and hydrogen peroxide as the oxidant. The effects of various parameters, such as the different solvents, the amount of solvent used, the amount of catalyst used, the reaction time, the reaction temperature and the amount of hydrogen peroxide used on the yield of phenol were studied to identify optimum reaction conditions. Conventionally heated reaction gives a phenol yield of 0.6%. A higher phenol yield of 13.9% with a selectivity of 100% is obtained when the reaction mixture was irradiated with micro-wave energy. It is concluded that microwave irradiation offers more effective control of energy input for hydroxyl radical generation that is appropriate for various synthetic reactions.展开更多
The reaction mechanism of the liquid phase ammoniation of adipic acid to adiponitrile was studied experimentally in a semi-batch reactor. Macrokinetics of the main and side reactions were identified to minimize corros...The reaction mechanism of the liquid phase ammoniation of adipic acid to adiponitrile was studied experimentally in a semi-batch reactor. Macrokinetics of the main and side reactions were identified to minimize corrosion and coking to prolong the operation period, to increase the yield of adiponitrile and to improve the design of the reactor. Macrokinetic equations of ammoniation-neutralization of adipic acid and dehydration were of first-order to adipic concentration cB≥3.5% and of second order for cB≥3.5%. Catalyst H3PO4 reduced the activation energy of neutralization and dehydration reactions of adipic acid and was significantly important for the second step of dehydration to produce adiponitrile.展开更多
The selective oxidation of methanol to methyl formate is one of the most attractive processes to obtain value-added methanol-downstream products.The development of highly efficient and stable catalysts is critical for...The selective oxidation of methanol to methyl formate is one of the most attractive processes to obtain value-added methanol-downstream products.The development of highly efficient and stable catalysts is critical for this transformation.In this study,a series of MIL-88B(Fe_(x),Co_(1‒x))bimetallic catalysts with different Fe/Co molar ratios were prepared through a one-pot hydrothermal method.X-ray diffraction,scanning electron microscopy,high-resolution transmission electron microscopy,energy dispersive spectroscopy,Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,N2 adsorption-desorption,and inductively coupled plasma-mass spectrometry characterization were performed to elucidate the structure of the catalysts.The activity of the catalysts were assessed in the one-step oxidation of methanol to methyl formate with H_(2)O_(2)in a liquid-phase batch reactor.The results show that the MIL-88B(Fe_(x),Co_(1‒x))catalysts exhibit uniform needle-like morphologies with an average length and width of 400-600 nm and 100-150 nm,respectively.Co^(2+)is incorporated into the framework by partially replacing Fe^(3+)in MIL-88B.Moreover,the catalyst efficiently promoted the conversion of methanol to methyl formate.When MIL-88B(Fe_(0.7),Co_(0.3))catalyst was used with a molar ratio of H_(2)O_(2)to methanol of 0.5 at 80℃for 60 min,34.8%methanol conversion was achieved,and the selectivity toward methyl formate was 67.6%.The catalysts also showed great stability with a steady conversion and selectivity even after four cycles.The preliminary oxidation mechanism was also studied.It was determined that H_(2)O_(2)is first adsorbed on the Fe^(3+)sites and subsequently activates these sites.Methanol is adsorbed by the O atoms of the framework through hydrogen bonding and is gradually oxidized to formic acid.Subsequently,formic acid reacts with the residual methanol at the Fe^(3+)and Co^(2+)Lewis acid sites to form methyl formate.展开更多
A rapid, sensitive and reproducible high performance liquid chromatography (HPLC) method with post-column fluorescence derivatization has been developed to determine the amount of low-molecular- weight sulfated poly...A rapid, sensitive and reproducible high performance liquid chromatography (HPLC) method with post-column fluorescence derivatization has been developed to determine the amount of low-molecular- weight sulfated polysaccharide (GFS) in vivo. The metabolism of GFS has been shown to fit a two component model following its administration by intravenous injection, and its pharmacokinetic parameters were determined to be as follows: half-time of distribution phase (t1/2α)=11.2±2.93 min, half-time of elimination phase (tl/2α)=98.20±25.78 min, maximum concentration (Cmax)=110.53 gg/mL and peak time (Tmax)=5 min. The pharmacokinetic behavior of GFS was also investigated following intragastric administration. However, the concentration of GFS found in serum was too low for detection, and GFS could only be detected for up to 2 h after intragastric administration (200 mg/kg body weight). Thus, the bioavailability of GFS was low following intragastric administration because of the metabolism of GFS. In conclusion, HPLC with post-column derivatization could be used for quantitative microanalysis and pharmacokinetic studies to determine the presence of polysaccharides in the serum following intravenous injection.展开更多
To find novel lead compound, seventy-four compound libraries were built through two rounds by a solution-phase CC on the basis of our developed method for the synthesis of dithiocarbamic acid ester. After evaluation f...To find novel lead compound, seventy-four compound libraries were built through two rounds by a solution-phase CC on the basis of our developed method for the synthesis of dithiocarbamic acid ester. After evaluation for the antitumor activities of libraries, six compounds were selected to be synthesized and examined their antitumor activities. It was found that compound 13 (HGWJ-11 C) with novel structure exhibited significant antitumor activities and the scaffold of dithiocarbamic acid was very crucial for the antitumor activity. The compound 13 is worth studying deeply as a potent hit compound.展开更多
In the present study, we effectively detected 10 steroids and glucuronic acid-conjugated steroid metabolites in 12 min by ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Ster...In the present study, we effectively detected 10 steroids and glucuronic acid-conjugated steroid metabolites in 12 min by ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Steroids testosterone (T), 5ct-dihydrotestosterone (DHT), androsterone (ADT), etiocholanolone (ETIO), estradiol (E2) and their glucuronide conjugates were well-separated on an Eclipse Plus C18 column (2.1 mm×50 ram, RRHD 1.8μm). The mobile phase consisted of a mixture of methanol and ultrapure water (containing I mM ammonium formate) at a ratio of 60:40 (v/v), and the flow rate was set at 0.25 mL/min. The LC eluate was detected by electrospray ionization (ESI) source in both positive and negative ion modes. Neutral loss (NL of 176, 194, 211 and 229 Da in positive mode) and precursor ion (PI ofm/z 141,159 and 177 in positive mode and 75, 85 and 133 in negative mode) methods were applied for the detection of steroid glucuronides. The multiple reaction monitoring (MRM) transitions were m/z 289.3→97.1,291.3→105, 291.3→199.2, 273.2→145.4 and 255.2→159.1 for T, DHT, ADT, ETIO and E2 in positive mode, respectively; as well as m/z 463.3→85 for T glucuronide (T-G), m/z 465.3→75 for DHT glucuronide (DHT-G), ADT glucuronide (ADT-G), ETIO glucuronide (ETIO-G) and m/z 447.3→271 for E2 glucuronide (Ez-G) in negative mode. In addition, the analytical method was also applied for the detection of steroid glucuronides in pooled human liver microsomes (HLM), which might serve as a basis for further investigation of steroid metabolism in vivo and in vitro.展开更多
High performance liquid chromatography coupled with quadruple-time-of-flight mass spectrometry(HPLC-Q-TOF-MS)method was developed for analyzing the hydrolytic mixtures of ginsenoside R_(g1) in acidic conditions(pH 3)....High performance liquid chromatography coupled with quadruple-time-of-flight mass spectrometry(HPLC-Q-TOF-MS)method was developed for analyzing the hydrolytic mixtures of ginsenoside R_(g1) in acidic conditions(pH 3). Three catalysts, a heteropolyacid(H_4SiW_(12)O_(40), SiW_(12) for short), its complex with γ-CD(SiW_(12)/γ-CD for short) and formic acid, were used for comparison. The chemical transformation products were identified based on the accurate mass measurement and the fragment ions obtained from tandem mass spectrometry. It was concluded that the catalytic efficiency of SiW_(12)(≈SiW_(12)/γ-CD) is ca. 410 times higher than that of formic acid, thus becoming the most efficient catalyst for chemical transformations of ginsenosides.展开更多
In this work, we fabricated the poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium(0) nanoclusters by reduction of RuC13 using different reducing agents, and studied their catalytic activity in hydrogen gene...In this work, we fabricated the poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium(0) nanoclusters by reduction of RuC13 using different reducing agents, and studied their catalytic activity in hydrogen generation from the decomposition of formic acid. It was demonstrated that N-vinyl-2-pyrrolidone (NVP), which is a monomer of PVP, could promote the reaction by coordination with Ru nanoparticles. The Ru nanoparticles catalyst reduced by sodium borohydride (NaBH4) exhibited highest catalytic activity for the decomposition of formic acid into H2 and CO2. The turnover of numenber (TOF) value could reach 26113 h-1 at 80 ℃. We believe that the effective catalysts have potential of application in hydrogen storage by formic acid.展开更多
文摘The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture of chloroform-n-heptane.2-(4-Hydrazinocarbonyl- phenyl)-4,5-diphenylimidazole (HCPI) was used as a fluorescent labelling reagent of the fatty acids. The labelling reaction was carried out at 30℃ for 1 h at pH 6.5 and the resulting reaction mixture was sudjected to HPLC. The labelled fatty acid C_(17)(P-C_(17))was used as the internal standard. The la- belled fatty acids C_(16) and C_(18) were separated within 18 min on an ODS-8OTM column (150 mm× 6 mm ID,5μm,Tosoh Japan).The calibrlation curves of fatty acids from the spiked control serum were Y_1=-0.003 7 + 0.0028X_1,r=0.994 for FA C_( 16) and Y_2=0.00 1 2 + 0.00098X_2,r=0.999 for FA C_( 18),respectively.The average recoveries of facids from the spiked contrl serum were 107.2%(n=8,RSD=4.3%)for FA C_(16) and 97.35%(n=8, RSD=4.0%)for FA C_(18),respectively.The lower detection limits of fatty acids after reaction were 12μmol per 20μl injection for FA C_(16) and 18 μmol per 20μl injection for FA C_(18),respectively(signal to noise ratio, S/N=2).The HPLC/CL method was applied to the determination of FA C_(16) and FA C_(18) in normal human serum and the results showed that the concentrations of fatty acids in normal human serum were 0.134 ± 0.009 μ mol/ml serum(n=5) for FA C_(16) and 0.052±0.028 μmol/ml serum(n=5)for FA C_(18),respectively.
文摘A new method for the determination of baicalin with HPLC-CL was developed. The method was based on the chemiluminescence reaction between KMnO4 and baicalin sensitized from HCHO. The linear range was 3.7?0-6~9.8?0-5 mol/L with detection limit of 1.7?0-6 mol/L and the relative standard deviation was 2.5 % (Cs=6.6?0-5 mol/L, n=5). The method has been applied to the determination of baicalin in oral administration, injection, Scutellariae radix and granules with good results.
文摘In this paper,shorter residence time(a few minutes)with high yield in the trickle bed process for per- acetic acid synthesis by acetaldehyde liquid phase oxidation can be realized on the selected packing material SA-5118.For acetaldehyde in acetone with ferric ion as catalyst,the optimized process conditions were presented. The main factors influencing the yield,selectivity and conversion are residence time,temperature and acetaldehyde concentration,respectively.The temperature range checked is from 30 to 65℃.High yield of 81.53%with high se- lectivity of 91.84%can be obtained at higher temperature of 55℃when the residence time is 5.5min and the acet- aldehyde concentration is 9.85%(by mass).And there is a critical acetaldehyde concentration point(Cccp)between 18%and 19.5%(by mass).At temperature less than 55℃,the highest yield to peracetic acid at each temperature level increases with temperature when the acetaldehyde concentration is below Cccp and decreases with temperature when the acetaldehyde concentration is above Cccp.
基金supported by the National Natural Science Foundation of China (No.50921002)
文摘Hydroxyl radicals HO are generated under Fenton-like (Fe2++H2O2→HO?+OH?+Fe3+) catalytic conditions upon microwave irradiation. Liquid-phase direct catalytic oxidation of benzene to phenol was obtained using FeSO4 supported on silica gel as a solid catalyst and hydrogen peroxide as the oxidant. The effects of various parameters, such as the different solvents, the amount of solvent used, the amount of catalyst used, the reaction time, the reaction temperature and the amount of hydrogen peroxide used on the yield of phenol were studied to identify optimum reaction conditions. Conventionally heated reaction gives a phenol yield of 0.6%. A higher phenol yield of 13.9% with a selectivity of 100% is obtained when the reaction mixture was irradiated with micro-wave energy. It is concluded that microwave irradiation offers more effective control of energy input for hydroxyl radical generation that is appropriate for various synthetic reactions.
文摘The reaction mechanism of the liquid phase ammoniation of adipic acid to adiponitrile was studied experimentally in a semi-batch reactor. Macrokinetics of the main and side reactions were identified to minimize corrosion and coking to prolong the operation period, to increase the yield of adiponitrile and to improve the design of the reactor. Macrokinetic equations of ammoniation-neutralization of adipic acid and dehydration were of first-order to adipic concentration cB≥3.5% and of second order for cB≥3.5%. Catalyst H3PO4 reduced the activation energy of neutralization and dehydration reactions of adipic acid and was significantly important for the second step of dehydration to produce adiponitrile.
文摘The selective oxidation of methanol to methyl formate is one of the most attractive processes to obtain value-added methanol-downstream products.The development of highly efficient and stable catalysts is critical for this transformation.In this study,a series of MIL-88B(Fe_(x),Co_(1‒x))bimetallic catalysts with different Fe/Co molar ratios were prepared through a one-pot hydrothermal method.X-ray diffraction,scanning electron microscopy,high-resolution transmission electron microscopy,energy dispersive spectroscopy,Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy,N2 adsorption-desorption,and inductively coupled plasma-mass spectrometry characterization were performed to elucidate the structure of the catalysts.The activity of the catalysts were assessed in the one-step oxidation of methanol to methyl formate with H_(2)O_(2)in a liquid-phase batch reactor.The results show that the MIL-88B(Fe_(x),Co_(1‒x))catalysts exhibit uniform needle-like morphologies with an average length and width of 400-600 nm and 100-150 nm,respectively.Co^(2+)is incorporated into the framework by partially replacing Fe^(3+)in MIL-88B.Moreover,the catalyst efficiently promoted the conversion of methanol to methyl formate.When MIL-88B(Fe_(0.7),Co_(0.3))catalyst was used with a molar ratio of H_(2)O_(2)to methanol of 0.5 at 80℃for 60 min,34.8%methanol conversion was achieved,and the selectivity toward methyl formate was 67.6%.The catalysts also showed great stability with a steady conversion and selectivity even after four cycles.The preliminary oxidation mechanism was also studied.It was determined that H_(2)O_(2)is first adsorbed on the Fe^(3+)sites and subsequently activates these sites.Methanol is adsorbed by the O atoms of the framework through hydrogen bonding and is gradually oxidized to formic acid.Subsequently,formic acid reacts with the residual methanol at the Fe^(3+)and Co^(2+)Lewis acid sites to form methyl formate.
基金Supported by the National Natural Science Foundation of China(No.41376166)the Ocean Public Welfare Scientific Research Project(Nos.201005024,201405040)+1 种基金the Jiangsu Science and Technology Project(No.BE2012687)the Special Fund for Cooperation between Jilin Province and Chinese Academy of Sciences(No.2013SYHZ0023)
文摘A rapid, sensitive and reproducible high performance liquid chromatography (HPLC) method with post-column fluorescence derivatization has been developed to determine the amount of low-molecular- weight sulfated polysaccharide (GFS) in vivo. The metabolism of GFS has been shown to fit a two component model following its administration by intravenous injection, and its pharmacokinetic parameters were determined to be as follows: half-time of distribution phase (t1/2α)=11.2±2.93 min, half-time of elimination phase (tl/2α)=98.20±25.78 min, maximum concentration (Cmax)=110.53 gg/mL and peak time (Tmax)=5 min. The pharmacokinetic behavior of GFS was also investigated following intragastric administration. However, the concentration of GFS found in serum was too low for detection, and GFS could only be detected for up to 2 h after intragastric administration (200 mg/kg body weight). Thus, the bioavailability of GFS was low following intragastric administration because of the metabolism of GFS. In conclusion, HPLC with post-column derivatization could be used for quantitative microanalysis and pharmacokinetic studies to determine the presence of polysaccharides in the serum following intravenous injection.
基金National Natural Science Foundation of China(Grant No.21172011)
文摘To find novel lead compound, seventy-four compound libraries were built through two rounds by a solution-phase CC on the basis of our developed method for the synthesis of dithiocarbamic acid ester. After evaluation for the antitumor activities of libraries, six compounds were selected to be synthesized and examined their antitumor activities. It was found that compound 13 (HGWJ-11 C) with novel structure exhibited significant antitumor activities and the scaffold of dithiocarbamic acid was very crucial for the antitumor activity. The compound 13 is worth studying deeply as a potent hit compound.
基金Science and Technology Plan Project of Guangzhou Municipal College(Grant No.1201430376)National Natural Science Foundation of China(Grant No.81503131)
文摘In the present study, we effectively detected 10 steroids and glucuronic acid-conjugated steroid metabolites in 12 min by ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Steroids testosterone (T), 5ct-dihydrotestosterone (DHT), androsterone (ADT), etiocholanolone (ETIO), estradiol (E2) and their glucuronide conjugates were well-separated on an Eclipse Plus C18 column (2.1 mm×50 ram, RRHD 1.8μm). The mobile phase consisted of a mixture of methanol and ultrapure water (containing I mM ammonium formate) at a ratio of 60:40 (v/v), and the flow rate was set at 0.25 mL/min. The LC eluate was detected by electrospray ionization (ESI) source in both positive and negative ion modes. Neutral loss (NL of 176, 194, 211 and 229 Da in positive mode) and precursor ion (PI ofm/z 141,159 and 177 in positive mode and 75, 85 and 133 in negative mode) methods were applied for the detection of steroid glucuronides. The multiple reaction monitoring (MRM) transitions were m/z 289.3→97.1,291.3→105, 291.3→199.2, 273.2→145.4 and 255.2→159.1 for T, DHT, ADT, ETIO and E2 in positive mode, respectively; as well as m/z 463.3→85 for T glucuronide (T-G), m/z 465.3→75 for DHT glucuronide (DHT-G), ADT glucuronide (ADT-G), ETIO glucuronide (ETIO-G) and m/z 447.3→271 for E2 glucuronide (Ez-G) in negative mode. In addition, the analytical method was also applied for the detection of steroid glucuronides in pooled human liver microsomes (HLM), which might serve as a basis for further investigation of steroid metabolism in vivo and in vitro.
基金supported by the National Natural Science Foundation of China(21371025),the 111 Project(B07012)the degree and postgraduate education development research project(YJYJG2015B07)by Beijing Institute of Technology
文摘High performance liquid chromatography coupled with quadruple-time-of-flight mass spectrometry(HPLC-Q-TOF-MS)method was developed for analyzing the hydrolytic mixtures of ginsenoside R_(g1) in acidic conditions(pH 3). Three catalysts, a heteropolyacid(H_4SiW_(12)O_(40), SiW_(12) for short), its complex with γ-CD(SiW_(12)/γ-CD for short) and formic acid, were used for comparison. The chemical transformation products were identified based on the accurate mass measurement and the fragment ions obtained from tandem mass spectrometry. It was concluded that the catalytic efficiency of SiW_(12)(≈SiW_(12)/γ-CD) is ca. 410 times higher than that of formic acid, thus becoming the most efficient catalyst for chemical transformations of ginsenosides.
基金supported by the Recruitment Program of Global Youth Experts of China, Chinese Academy of Sciences (KJCX2.YW.H30)the National Natural Science Foundation of China (21533011, 21321063)
文摘In this work, we fabricated the poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium(0) nanoclusters by reduction of RuC13 using different reducing agents, and studied their catalytic activity in hydrogen generation from the decomposition of formic acid. It was demonstrated that N-vinyl-2-pyrrolidone (NVP), which is a monomer of PVP, could promote the reaction by coordination with Ru nanoparticles. The Ru nanoparticles catalyst reduced by sodium borohydride (NaBH4) exhibited highest catalytic activity for the decomposition of formic acid into H2 and CO2. The turnover of numenber (TOF) value could reach 26113 h-1 at 80 ℃. We believe that the effective catalysts have potential of application in hydrogen storage by formic acid.