期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
四氯化硅液相鼓泡法制备纳米白炭黑工艺研究 被引量:2
1
作者 赵云 杨旭 +3 位作者 但建明 乔秀文 李洪玲 洪成林 《无机盐工业》 CAS 北大核心 2014年第8期28-32,共5页
以多晶硅副产物四氯化硅为原料,氨水为中和剂,十二烷基苯磺酸钠为改性剂,在水-醇-氨体系中利用液相鼓泡法制备纳米白炭黑,并采用IR、XRD、SEM、TEM对纳米白炭黑晶体结构、形貌、分散性及粒径进行表征。研究了醇水比、氨水用量、分散剂... 以多晶硅副产物四氯化硅为原料,氨水为中和剂,十二烷基苯磺酸钠为改性剂,在水-醇-氨体系中利用液相鼓泡法制备纳米白炭黑,并采用IR、XRD、SEM、TEM对纳米白炭黑晶体结构、形貌、分散性及粒径进行表征。研究了醇水比、氨水用量、分散剂种类及用量、双氧水加入量等因素对纳米白炭黑分散性及粒径的影响。纳米白炭黑最佳制备工艺条件:体系总体积为70 mL,V(水)∶V(醇)∶V(氨)=38∶15∶12,六偏磷酸钠加入量为1.5%(质量分数),双氧水用量为5 mL。IR、XRD表征结果表明产品为无定形二氧化硅;SEM、TEM表征结果表明纳米白炭黑粒径约100 nm且分散较好。 展开更多
关键词 四氯化硅 水-醇-氨体系 液相鼓泡 纳米白炭黑
下载PDF
Comparison of a Full Second-Order Moment Model and an Algebraic Stress Two-Phase Turbulence Model for Simulating Bubble-Liquid Flows in a Bubble Column 被引量:3
2
作者 周力行 杨玟 +2 位作者 廉春英 L.S.Fan D.J.Lee 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第2期142-148,共7页
A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the b... A full second-order moment (FSM) model and an algebraic stress (ASM) two-phase turbulence modelare proposed and applied to predict turbulent bubble-liquid flows in a 2D rectangular bubble column. Predictiongives the bubble and liquid velocities, bubble volume fraction, bubble and liquid Reynolds stresses and bubble-liquidvelocity correlation. For predicted two-phase velocities and bubble volume fraction there is only slight differencebetween these two models, and the simulation results using both two models are in good agreement with the particleimage velocimetry (PIV) measurements. Although the predicted two-phase Reynolds stresses using the FSM are insomewhat better agreement with the PIV measurements than those predicted using the ASM, the Reynolds stressespredicted using both two models are in general agreement with the experiments. Therefore, it is suggested to usethe ASM two-phase turbulence model in engineering application for saving the computation time. 展开更多
关键词 second-order moment model two-phase turbulence bubble-liquid flow bubble column
下载PDF
Lagrangian coherent structures analysis of gas-liquid flow in a bubble column
3
作者 WU Qin WANG GuoYu +1 位作者 HUANG Biao Bai ZeYu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第6期1169-1177,共9页
The objective of this paper is to apply a new identifying method to investigating the gas-liquid two-phase flow behaviors in a bubble column with air injected into water. In the numerical simulations, the standard k-c... The objective of this paper is to apply a new identifying method to investigating the gas-liquid two-phase flow behaviors in a bubble column with air injected into water. In the numerical simulations, the standard k-c turbulence model is employed to de- scribe the turbulence phenomenon occurring in the continuous fluid. The Finite-Time Lyapunov Exponent (FTLE) and Lagrangian Coherent Structures (LCS) are applied to analyze the vortex structures in multiphase flow. Reasonable agreements are obtained between the numerical and experimental data. The numerical results show that the evolution of gas-liquid in the column includes initial and periodical developing stages. During the initial stage, the bubble hose is forming and extending along the vertical direction with the vortex structures formed symmetrically. During the periodical developing stage, the bub- ble hose starts to oscillate periodically, and the vortexes move along the bubble hose to the bottom of column alternately. Compared to the Euler-system-based identification criterion of a vortex, the FTLE field presents the boundary of a vortex without any threshold defined and the LCS represents the divergence extent of infinite neighboring particles. During the initial stage, the interfaces between the forward and backward flows are highlighted by the LCS. As for the periodical developing stage, the LCS curls near the vortex centers, providing a method of analyzing a flow field from a dynamical system perspec- tive. 展开更多
关键词 bubble columns multiphase flow finite-time Lyapunov exponent Lagrangian coherent structures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部