期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
黏结剂喷射增材制造结合液硅反应熔渗制备SiC_(w)/SiC陶瓷的微观组织和力学性能 被引量:2
1
作者 胡时东 冯琨皓 +4 位作者 王启航 袁嘉明 毛贻桅 蔡道生 魏青松 《硅酸盐学报》 EI CAS CSCD 北大核心 2023年第12期3159-3168,共10页
SiC陶瓷凭借其高强度、高硬度和低密度等优势,在航空航天、核电工业等领域有着广阔的应用前景。但由于SiC加工难度高、韧性低,阻碍了其广泛应用。为解决上述问题,本研究采用黏结剂喷射增材制造(BJAM)结合液硅反应熔渗技术(LSI)制备了不... SiC陶瓷凭借其高强度、高硬度和低密度等优势,在航空航天、核电工业等领域有着广阔的应用前景。但由于SiC加工难度高、韧性低,阻碍了其广泛应用。为解决上述问题,本研究采用黏结剂喷射增材制造(BJAM)结合液硅反应熔渗技术(LSI)制备了不同碳化硅晶须含量(SiC_(w))的SiC_(w)/SiC复合材料。结果表明,当SiC_(w)含量达到7.5%(体积分数)时,材料的弯曲强度和断裂韧性达到最大值分别为215.29 MPa和3.25 MPa?m^(1/2),硬度则在SiC_(w)为5%达到23.06 HV的峰值。但当SiC_(w)含量继续升高后,材料内部残余硅相含量提升,力学性能发生恶化。对打印初坯进行2次增碳可有效降低材料内部硅相含量,弯曲强度、断裂韧性和硬度最大分别提升10.15%、10.46%和10.58%。引入的SiC_(w)通过偏折裂纹、拔出和折断等方式起到了对复合陶瓷材料的增强增韧作用。 展开更多
关键词 黏结剂喷射 碳化 碳化晶须 反应 断裂韧性 增材制造
原文传递
纤维热处理对C/C-SiC复合材料剪切强度的影响 被引量:5
2
作者 代吉祥 沙建军 +2 位作者 张玉翠 李建 韦志强 《硅酸盐学报》 EI CAS CSCD 北大核心 2013年第7期923-929,共7页
对T300碳纤维在真空环境下,在600、900、1200、1500℃进行热处理,用液硅熔渗反应法(liquid silicon infiltration,LSI)制备了不同微观组织结构的C/C-SiC复合材料。采用光电子能谱分析了热处理对纤维表面结构的影响,用光学显微镜和扫描... 对T300碳纤维在真空环境下,在600、900、1200、1500℃进行热处理,用液硅熔渗反应法(liquid silicon infiltration,LSI)制备了不同微观组织结构的C/C-SiC复合材料。采用光电子能谱分析了热处理对纤维表面结构的影响,用光学显微镜和扫描电子显微镜对材料微观形貌进行了观察分析。采用双槽口剪切法(DNS)测试了C/C-SiC复合材料层间剪切强度(interlaminar shear strengh,ILSS),并分析了纤维热处理对材料剪切性能影响的微观机理。结果表明:碳纤维经热处理后,表面化学成分发生变化,氧含量显著降低,改变了碳纤维增强树脂基复合材料(carbon fiber reinforced resin matrix composite,CFRP)先驱体中纤维/树脂界面结合强度,从而在CFRP裂解后形成了具有不同微观结构的C/C预制体,通过液Si对不同微结构的C/C预制体进行熔渗,获得具有不同微观结构的C/C-SiC复合材料;DNS测试发现碳纤维热处理能够有效改善C/C-SiC复合材料的层间剪切强度,主要是由于纤维经热处理后制备的C/C-SiC复合材料中,SiC基体相分布较均匀并包裹在碳纤维周围,导致纤维/基体界面结合强度高。经1500℃热处理纤维增强的C/C-SiC复合材料,其剪切强度为34MPa,与未处理的相比,ILSS提高了33%。 展开更多
关键词 陶瓷基复合材料 热处理 液硅熔渗 层间剪切强度 碳纤维 碳化
原文传递
C/C-SiC-ZrC复合材料的制备及其力学性能 被引量:6
3
作者 代吉祥 沙建军 +1 位作者 王永昌 王守豪 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第3期742-748,共7页
利用浆料浸渗技术将纳米ZrC粒子引入到CFRP先驱体中,裂解CFRP获得C/C-ZrC多孔体,然后采用液硅熔渗反应工艺制备了C/C-SiC-ZrC复合材料。使用SEM和XRD对材料微观形貌和组织进行了观察与分析。采用三点弯曲和单边缺口梁法(SENB)对C/C-SiC-... 利用浆料浸渗技术将纳米ZrC粒子引入到CFRP先驱体中,裂解CFRP获得C/C-ZrC多孔体,然后采用液硅熔渗反应工艺制备了C/C-SiC-ZrC复合材料。使用SEM和XRD对材料微观形貌和组织进行了观察与分析。采用三点弯曲和单边缺口梁法(SENB)对C/C-SiC-ZrC复合材料的弯曲强度和断裂韧性分别进行了测试。结果表明:采用浆料浸渗技术可以将纳米ZrC粒子均匀的弥散在C/C-ZrC多孔体中,随着引入ZrC纳米粒子含量的增多,C/C-ZrC多孔体孔隙率增大。经液硅熔渗反应后,获得的C/C-SiC-ZrC复合材料具有不同微观组织结构。力学性能测试发现,当纳米ZrC粒子含量为5%(质量分数)时,复合材料弯曲强度和断裂韧性达到了最大值;当ZrC粒子含量超过5%时,其弯曲强度和断裂韧性有所下降,表明适量纳米ZrC粒子的引入,可以改善C/C-SiC-ZrC复合材料的力学性能。 展开更多
关键词 浆料浸渍 液硅熔渗 C/C-SiC-ZrC 微观结构 力学性能
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部