The characterization of suspension/emulsion sprays plays a decisive role in many industrial processes. A good example of such a process is the drying of a milk spray to produce milk powder, where the process efficienc...The characterization of suspension/emulsion sprays plays a decisive role in many industrial processes. A good example of such a process is the drying of a milk spray to produce milk powder, where the process efficiency and product quality is typically controlled by atomization parameters like flow rate, pressure, etc.. However, these parameters influence directly the droplet size and droplet velocity distributions in a spray, so that optimizing a spray drying process often involves adjusting the spray to a desired droplet size and droplet velocity distribution. This requires a measurement technique capable of characterizing in real time, the droplets in a suspension/emulsion spray. To achieve this aim, we present developments to the well-known time-shift technique for spray measurements.展开更多
文摘The characterization of suspension/emulsion sprays plays a decisive role in many industrial processes. A good example of such a process is the drying of a milk spray to produce milk powder, where the process efficiency and product quality is typically controlled by atomization parameters like flow rate, pressure, etc.. However, these parameters influence directly the droplet size and droplet velocity distributions in a spray, so that optimizing a spray drying process often involves adjusting the spray to a desired droplet size and droplet velocity distribution. This requires a measurement technique capable of characterizing in real time, the droplets in a suspension/emulsion spray. To achieve this aim, we present developments to the well-known time-shift technique for spray measurements.