以郑单21为试验材料,利用透射电镜(TEM:Transmission Electron Microscope)和激光粒度分析仪研究水分胁迫下玉米胚乳淀粉粒的形态和粒度分布。结果表明:水分胁迫导致玉米籽粒形态建成滞后,尤其是内、外珠被组织解体和胚乳淀粉粒积累的...以郑单21为试验材料,利用透射电镜(TEM:Transmission Electron Microscope)和激光粒度分析仪研究水分胁迫下玉米胚乳淀粉粒的形态和粒度分布。结果表明:水分胁迫导致玉米籽粒形态建成滞后,尤其是内、外珠被组织解体和胚乳淀粉粒积累的速度减缓。授粉后7天,水分胁迫处理的籽粒外珠被尚未退化消失,果皮、内珠被和胚乳细胞的界限模糊,几乎每个果皮细胞内都含有细胞核;而正常供水处理的玉米籽粒外珠被已退化消失,果皮、内珠被和胚乳细胞的界限清晰,果皮细胞内容物较少,细胞壁较薄,内珠被细胞明显较大,内容物少,绝大多数细胞无细胞核。授粉后11天,两处理的胚乳细胞的细胞壁明显变薄,细胞内容物显著增多,细胞内已明显可见大大小小的淀粉粒,但正常供水处理的淀粉粒明显大且多。水分胁迫处理的淀粉粒表面积、数目和体积分布均呈单峰曲线,而正常供水处理表现为淀粉粒数目分布呈单峰曲线,表面积分布和体积分布呈双峰曲线。水分胁迫可降低A型淀粉粒的表面积、数目和体积百分比,增加B型淀粉粒的表面积、数目和体积百分比。展开更多
Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. α_Amylase is considered as one of the ke...Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. α_Amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was often shown extrachloroplastic in living cells. The present experiment showed that α_amylase activity was progressively increasing concomitantly with the decreasing starch concentrations during the development of apple ( Malus domestica Borkh cv. Starkrimson) fruit. The apparent amount of α_amylase assessed by Western blotting also increased during the fruit development, which is consistent with the seasonal changes in the enzyme activity. The enzyme subcellular_localization studies via immunogold electron_ microscopy technique showed that α_amylase visualized by gold particles was predominantly located in plastids, but the gold particles were scarcely found in other subcellular compartments. A high density of the enzyme was observed at the periphery of starch granules during the middle and late developmental stages. These data proved that the enzyme is compartmented in its functional sites in the living cells of the fruit. The predominantly plastid_distributed pattern of α_amylase in cells was shown unchanged throughout the fruit development. The density of gold particles (α_amylase) in plastids was increasing during the fruit development, which is consistent with the results of Western blotting. So it is considered that α_amylase is involved in starch hydrolysis in plastids of the fruit cells.展开更多
Abnormal deposition of amyloid-p(Ap) peptides and formation of neuritic plaques are recognized as pathological processes in Alzheimer's disease (AD) brain. By using amyloid precursor protein (APP) transfected cell...Abnormal deposition of amyloid-p(Ap) peptides and formation of neuritic plaques are recognized as pathological processes in Alzheimer's disease (AD) brain. By using amyloid precursor protein (APP) transfected cells, this study aims to investigate the effect of overproduction of Aβ on cell differentiation and cell viability. It was shown that after serum withdrawal, untransfected cell (N2a/Wt) and vector transfected cells (N2a/vector) extended long and branched cell processes, whereas no neurites was induced in wild type APP (N2a/APP695) and Swedish mutant APP (N2a/ APPswe) transfected N2a cells. After differentiation by serum withdrawal, the localization of APP/AP and neurofilament was extended to neurites, whereas those of APP-transfected cells were stillrestricted within the cell body. Levels of both APP and Aβ were significantly higher in N2a/APP695 and N2a/APPswe than in N2a/Wt, as determined by Western blot and Sandwich ELISA, respectively. To further investigate the effect of A0 on the inhibition of cell differentiation, we added exogenously the similar level or about 10-times of the AP level produced by N2a/APP695 and N2a/APPswe to the culture medium and co-cultured with N2a/Wt for 12 h, and we found that the inhibition of serum withdrawal-induced differentiation observed in N2a/APP695 and N2a/APPswe could not be reproduced by exogenous administration of AP into N2a/Wt. We also observed that neither endogenous production nor exogenous addition of Aβ1-40 or Aβ1-42, even to hundreds fold of the physiological concentration, affected obviously the cell viability. These results suggest that the overproduction of AP could not arrest cell differentiation induced by serum deprivation and that, at least to a certain degree and in a limited time period, is not toxic to cell viability.展开更多
Bulblet development is a problem in global lily bulb production and carbohydrate metabolism is a crucial factor. Micropropagation acts as an efficient substitute for faster propagation and can provide a controllable c...Bulblet development is a problem in global lily bulb production and carbohydrate metabolism is a crucial factor. Micropropagation acts as an efficient substitute for faster propagation and can provide a controllable condition to explore bulb growth. The present study was conducted to investigate the effects of humic acid (HA) on bulblet swelling and the carbohydrate metabolic pathway in Li/ium Oriental Hybrids 'Sorbonne' under in vitro conditions. HA greatly promoted bulblet growth at 0.2, 2.0, and 20.0 mg/L, and pronounced increases in bulblet sucrose, total soluble sugar, and starch content were observed for higher HA concentrations (_〉2.0 mg/L) within 45 d after transplanting (DAT). The activities of three major starch synthetic enzymes (including adenosine 5'-diphosphate glucose pyro- phosphorylase, granule-bound starch synthase, and soluble starch synthase) were enhanced dramatically after HA application especially low concentration HA (LHA), indicating a quick response of starch metabolism. However, higher doses of HA also caused excessive aboveground biomass accumulation and inhibited root growth. Accordingly, an earlier carbon starvation emerged by observing evident starch degradation. Relative bulblet weight gradually decreased with increased HA doses and thereby broke the balance between the source and sink. A low HA concentration at 0.2 mg/L performed best in both root and bulblet growth. The number of roots and root length peaked at 14.5 and 5.75 cm respectively. The fresh bulblet weight and diameter reached 468 mg (2.9 times that under the control treatment) and 11.68 mm, respectively. Further, sucrose/starch utilization and conversion were accelerated and carbon famine was delayed as a result with an average relative bulblet weight of 80.09%. To our knowledge, this is the first HA application and mechanism research into starch metabolism in both in vitro and in vivo condition in bulbous crops.展开更多
文摘以郑单21为试验材料,利用透射电镜(TEM:Transmission Electron Microscope)和激光粒度分析仪研究水分胁迫下玉米胚乳淀粉粒的形态和粒度分布。结果表明:水分胁迫导致玉米籽粒形态建成滞后,尤其是内、外珠被组织解体和胚乳淀粉粒积累的速度减缓。授粉后7天,水分胁迫处理的籽粒外珠被尚未退化消失,果皮、内珠被和胚乳细胞的界限模糊,几乎每个果皮细胞内都含有细胞核;而正常供水处理的玉米籽粒外珠被已退化消失,果皮、内珠被和胚乳细胞的界限清晰,果皮细胞内容物较少,细胞壁较薄,内珠被细胞明显较大,内容物少,绝大多数细胞无细胞核。授粉后11天,两处理的胚乳细胞的细胞壁明显变薄,细胞内容物显著增多,细胞内已明显可见大大小小的淀粉粒,但正常供水处理的淀粉粒明显大且多。水分胁迫处理的淀粉粒表面积、数目和体积分布均呈单峰曲线,而正常供水处理表现为淀粉粒数目分布呈单峰曲线,表面积分布和体积分布呈双峰曲线。水分胁迫可降低A型淀粉粒的表面积、数目和体积百分比,增加B型淀粉粒的表面积、数目和体积百分比。
文摘Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. α_Amylase is considered as one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was often shown extrachloroplastic in living cells. The present experiment showed that α_amylase activity was progressively increasing concomitantly with the decreasing starch concentrations during the development of apple ( Malus domestica Borkh cv. Starkrimson) fruit. The apparent amount of α_amylase assessed by Western blotting also increased during the fruit development, which is consistent with the seasonal changes in the enzyme activity. The enzyme subcellular_localization studies via immunogold electron_ microscopy technique showed that α_amylase visualized by gold particles was predominantly located in plastids, but the gold particles were scarcely found in other subcellular compartments. A high density of the enzyme was observed at the periphery of starch granules during the middle and late developmental stages. These data proved that the enzyme is compartmented in its functional sites in the living cells of the fruit. The predominantly plastid_distributed pattern of α_amylase in cells was shown unchanged throughout the fruit development. The density of gold particles (α_amylase) in plastids was increasing during the fruit development, which is consistent with the results of Western blotting. So it is considered that α_amylase is involved in starch hydrolysis in plastids of the fruit cells.
文摘Abnormal deposition of amyloid-p(Ap) peptides and formation of neuritic plaques are recognized as pathological processes in Alzheimer's disease (AD) brain. By using amyloid precursor protein (APP) transfected cells, this study aims to investigate the effect of overproduction of Aβ on cell differentiation and cell viability. It was shown that after serum withdrawal, untransfected cell (N2a/Wt) and vector transfected cells (N2a/vector) extended long and branched cell processes, whereas no neurites was induced in wild type APP (N2a/APP695) and Swedish mutant APP (N2a/ APPswe) transfected N2a cells. After differentiation by serum withdrawal, the localization of APP/AP and neurofilament was extended to neurites, whereas those of APP-transfected cells were stillrestricted within the cell body. Levels of both APP and Aβ were significantly higher in N2a/APP695 and N2a/APPswe than in N2a/Wt, as determined by Western blot and Sandwich ELISA, respectively. To further investigate the effect of A0 on the inhibition of cell differentiation, we added exogenously the similar level or about 10-times of the AP level produced by N2a/APP695 and N2a/APPswe to the culture medium and co-cultured with N2a/Wt for 12 h, and we found that the inhibition of serum withdrawal-induced differentiation observed in N2a/APP695 and N2a/APPswe could not be reproduced by exogenous administration of AP into N2a/Wt. We also observed that neither endogenous production nor exogenous addition of Aβ1-40 or Aβ1-42, even to hundreds fold of the physiological concentration, affected obviously the cell viability. These results suggest that the overproduction of AP could not arrest cell differentiation induced by serum deprivation and that, at least to a certain degree and in a limited time period, is not toxic to cell viability.
基金Project supported by the National High-Tech R&D Program(863) of China(No.2011AA100208)the Zhejiang Provincial Natural Science Foundation of China(No.LY12C15003)
文摘Bulblet development is a problem in global lily bulb production and carbohydrate metabolism is a crucial factor. Micropropagation acts as an efficient substitute for faster propagation and can provide a controllable condition to explore bulb growth. The present study was conducted to investigate the effects of humic acid (HA) on bulblet swelling and the carbohydrate metabolic pathway in Li/ium Oriental Hybrids 'Sorbonne' under in vitro conditions. HA greatly promoted bulblet growth at 0.2, 2.0, and 20.0 mg/L, and pronounced increases in bulblet sucrose, total soluble sugar, and starch content were observed for higher HA concentrations (_〉2.0 mg/L) within 45 d after transplanting (DAT). The activities of three major starch synthetic enzymes (including adenosine 5'-diphosphate glucose pyro- phosphorylase, granule-bound starch synthase, and soluble starch synthase) were enhanced dramatically after HA application especially low concentration HA (LHA), indicating a quick response of starch metabolism. However, higher doses of HA also caused excessive aboveground biomass accumulation and inhibited root growth. Accordingly, an earlier carbon starvation emerged by observing evident starch degradation. Relative bulblet weight gradually decreased with increased HA doses and thereby broke the balance between the source and sink. A low HA concentration at 0.2 mg/L performed best in both root and bulblet growth. The number of roots and root length peaked at 14.5 and 5.75 cm respectively. The fresh bulblet weight and diameter reached 468 mg (2.9 times that under the control treatment) and 11.68 mm, respectively. Further, sucrose/starch utilization and conversion were accelerated and carbon famine was delayed as a result with an average relative bulblet weight of 80.09%. To our knowledge, this is the first HA application and mechanism research into starch metabolism in both in vitro and in vivo condition in bulbous crops.