Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention due to its low cost and great bearing capacity. In order to ensure the cover-bearing mode, the muddy soil inside th...Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention due to its low cost and great bearing capacity. In order to ensure the cover-bearing mode, the muddy soil inside the bucket foundation should be reinforced by some soil consolidation methods, such as negative pressure and electro-osmosis. Firstly, tests were conducted to obtain the reasonable current density. Meanwhile, to improve the electro-osmotic speed and effectiveness, other factors such as intermittent power and layout of electrode, were also studied in the tests. Then, the soil reinforcing tests by negative pressure combined with electro-osmosis were performed for the muddy soil consolidation inside the bucket foundation. The results showed that soil reinforcement by negative pressure was quicker and more obvious during the early phase, and electro-osmotic method can affect more range of soil by rational arrangement of electrodes. Compared with negative pressure, the electro-osmotic method was a continuous and relatively slow process of reinforcement, which was complementary to the negative pressure method. The voltage value of electro-osmosis had little effect on the muddy soil reinforcement inside the bucket foundation, and 1.5 A was chosen as the most reasonable current value for scale model testing in the electro-osmotic method.展开更多
The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes ...The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes was carried out to sample the soils and measure their dynamic characteristics.The data was divided into 7 types based on lithology,namely,muddy clay,muddy silty clay,silt,silty clay,clay,silty sand and fine sand.Statistics of the dynamic parameters of these soils are collected to obtain the mean values of dynamic shear modulus ratio and damping ratio at different depths.Then,two typical drill holes are selected to establish the soil dynamic models to investigate the seismic response in different cases.The dynamic seismic responses of soil are calculated using the statistical values of this paper,and the values of Code(1994) and those recommended by Yuan Xiaoming et al.(2000),respectively.The applicability and pertinence of the statistical value obtained in this paper are demonstrated by the response spectrum shape,peak ground acceleration and response spectral characteristics.The results can be taken as a reference of the soil dynamic value in this area and can be used in the seismic risk assessment of engineering projects.展开更多
In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequ...In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.展开更多
基金Supported by National Natural Science Foundation of China(No. 51109160)National High Technology Research and Development Program of China ("863" Program, No. 2012AA051705)International Science and Technology Cooperation Program of China (No. 2012DFA70490)
文摘Cover-bearing-type bucket foundation for offshore wind turbines has been paid more and more attention due to its low cost and great bearing capacity. In order to ensure the cover-bearing mode, the muddy soil inside the bucket foundation should be reinforced by some soil consolidation methods, such as negative pressure and electro-osmosis. Firstly, tests were conducted to obtain the reasonable current density. Meanwhile, to improve the electro-osmotic speed and effectiveness, other factors such as intermittent power and layout of electrode, were also studied in the tests. Then, the soil reinforcing tests by negative pressure combined with electro-osmosis were performed for the muddy soil consolidation inside the bucket foundation. The results showed that soil reinforcement by negative pressure was quicker and more obvious during the early phase, and electro-osmotic method can affect more range of soil by rational arrangement of electrodes. Compared with negative pressure, the electro-osmotic method was a continuous and relatively slow process of reinforcement, which was complementary to the negative pressure method. The voltage value of electro-osmosis had little effect on the muddy soil reinforcement inside the bucket foundation, and 1.5 A was chosen as the most reasonable current value for scale model testing in the electro-osmotic method.
基金sponsored by the State-level Public Welfare Scientific Research Courtyard Basic Scientific Research ProgramInstitute of Crustal Dynamics+1 种基金CEA (ZDJ2009-07ZDJ2009-23)
文摘The Tianjin coastal area is a typical soft soil region,where the soil is a marine deposit of the late Quaternary.The soil dynamic parameters from seismic risk assessment reports are collected,and drilling of 15 holes was carried out to sample the soils and measure their dynamic characteristics.The data was divided into 7 types based on lithology,namely,muddy clay,muddy silty clay,silt,silty clay,clay,silty sand and fine sand.Statistics of the dynamic parameters of these soils are collected to obtain the mean values of dynamic shear modulus ratio and damping ratio at different depths.Then,two typical drill holes are selected to establish the soil dynamic models to investigate the seismic response in different cases.The dynamic seismic responses of soil are calculated using the statistical values of this paper,and the values of Code(1994) and those recommended by Yuan Xiaoming et al.(2000),respectively.The applicability and pertinence of the statistical value obtained in this paper are demonstrated by the response spectrum shape,peak ground acceleration and response spectral characteristics.The results can be taken as a reference of the soil dynamic value in this area and can be used in the seismic risk assessment of engineering projects.
基金Projects(51278462,51378469)supported by the National Natural Science Foundation of ChinaProject(2011B81005)supported by Ningbo Science and Technology Innovation Team,ChinaProject(2013A610202)supported by Ningbo Natural Science Foundation of China
文摘In order to found an applicable equation of consolidation for gassy muddy clay, an effective stress formula of gas-charged nearly-saturated soils was introduced. And then, a consolidation equation was derived. Subsequently, supposing soils were under tangential loading, the expressions of pore water pressure were presented. The analytic solution of pore water pressure was attempted to be validated by the measured values in a real embankment. The parameters in the expressions of pore water pressure were gotten by the method of trial. The result shows that the consolidation model is rational and the analytic solution of pore water pressure is correct. The following conclusions can be made: 1) the influence of bubbles on the compressibility of pore fluid should be considered; 2) the effective stress would be influenced by bubbles, and the consolidation would depend on the compressibility of soil skeleton: the softer the soils are, the more distinct the influence of bubbles is; for normal clay, the influence of bubbles on the effective stress may be commonly neglected.