A co-culture of two plant materials, Astragalus sinicus L., a leguminous plant with concomitant nodules, and Elsholtzia splendens Naki-a Cu accumulator, along with treatments of a chelating agent (EDTA), root excretio...A co-culture of two plant materials, Astragalus sinicus L., a leguminous plant with concomitant nodules, and Elsholtzia splendens Naki-a Cu accumulator, along with treatments of a chelating agent (EDTA), root excretions (citric acid), and a control with E. splendens only were used to compare the mobility of heavy metals in chelating agents with a co-culture and to determine the potential for co-culture phytoremediation in heavy metal contaminated soils. The root uptake for Cu, Zn, and Pb in all treatments was significantly greater (P < 0.05) than that of the control treatment. However with translocation in the shoots, only Cu, Zn, and Pb in plants grown with the EDTA treatment and Zn in plants cocropped with the A. sinicus treatment increased significantly (P < 0.05). In addition, when a co-culture in soils with heavy and moderate contamination was compared, for roots in moderately contaminated soils only Zn concentration was significantly less (P < 0.05) than that of heavily contaminated soils, however, Cu, Zn, and Pb concentrations of shoots were all significantly lower (P < 0.05). Overall, this 'co-culture engineering' could be as effective as or even more effective than chelating agents, thereby preventing plant metal toxicity and metal leaching in soils as was usually observed in chelate-enhanced phytoremediation.展开更多
Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 ...Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 - 24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m^3·d), -215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m^3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m^3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor·h and hydrogen percentage of 51% -53% in the biogas.展开更多
Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological...Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.展开更多
This paper presents a case study on an ultra-deep diaphragm wall with a depth of 110 m constructed in Ningbo City. The in-situ application shows that using Bauer BC40 cutter machine in conjunction with cutter wheels s...This paper presents a case study on an ultra-deep diaphragm wall with a depth of 110 m constructed in Ningbo City. The in-situ application shows that using Bauer BC40 cutter machine in conjunction with cutter wheels specified for different strata would be qualified for constructing the 110 m diaphragm wall with high efficiency and precision given that the quality of slurry and poured concrete can be guaranteed. The ground settlement can be effectively controlled by using the overlapping construction method. Sliding failure as a whole characterized by pronounced lateral deformation is likely to occur in the upper muddy clay layer due to its high compressibility and sensitivity. In contrast, local collapse of trench walls tends to happen in the sandy silt strata. Furthermore, careful attention should be paid to sandy silt during the entire construction period as the vertical displacement of the sandy silt continues to develop even atter concrete pouring.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 40271060 and 41025005) the National Key Basic Research Support Foundation (NKBRSF) of China (No. 2002CB410809/10).
文摘A co-culture of two plant materials, Astragalus sinicus L., a leguminous plant with concomitant nodules, and Elsholtzia splendens Naki-a Cu accumulator, along with treatments of a chelating agent (EDTA), root excretions (citric acid), and a control with E. splendens only were used to compare the mobility of heavy metals in chelating agents with a co-culture and to determine the potential for co-culture phytoremediation in heavy metal contaminated soils. The root uptake for Cu, Zn, and Pb in all treatments was significantly greater (P < 0.05) than that of the control treatment. However with translocation in the shoots, only Cu, Zn, and Pb in plants grown with the EDTA treatment and Zn in plants cocropped with the A. sinicus treatment increased significantly (P < 0.05). In addition, when a co-culture in soils with heavy and moderate contamination was compared, for roots in moderately contaminated soils only Zn concentration was significantly less (P < 0.05) than that of heavily contaminated soils, however, Cu, Zn, and Pb concentrations of shoots were all significantly lower (P < 0.05). Overall, this 'co-culture engineering' could be as effective as or even more effective than chelating agents, thereby preventing plant metal toxicity and metal leaching in soils as was usually observed in chelate-enhanced phytoremediation.
文摘Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 - 24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m^3·d), -215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m^3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m^3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor·h and hydrogen percentage of 51% -53% in the biogas.
文摘Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.
基金Funded by the National Basic Research Program of China(973 Program,No.2014CB046905)the National Natural Science Foundation of China(Grant Nos.41172249 and 51509186)+1 种基金the State Key Laboratory for Geomechanics and Deep Underground Engineering(No.SKLGDUEK1303)the funding provided by Zhuhai Da Heng Qin Company Limited(Grant No.SG25-2014-173B1)
文摘This paper presents a case study on an ultra-deep diaphragm wall with a depth of 110 m constructed in Ningbo City. The in-situ application shows that using Bauer BC40 cutter machine in conjunction with cutter wheels specified for different strata would be qualified for constructing the 110 m diaphragm wall with high efficiency and precision given that the quality of slurry and poured concrete can be guaranteed. The ground settlement can be effectively controlled by using the overlapping construction method. Sliding failure as a whole characterized by pronounced lateral deformation is likely to occur in the upper muddy clay layer due to its high compressibility and sensitivity. In contrast, local collapse of trench walls tends to happen in the sandy silt strata. Furthermore, careful attention should be paid to sandy silt during the entire construction period as the vertical displacement of the sandy silt continues to develop even atter concrete pouring.